Functional connectivity of the primary olfactory cortex is decreased in Alzheimer’s disease and mild cognitive impairment

Megha M Vasavada1, Han Zhang2, Jianli Wang1, Prasanna Karunanayaka1, Paul Eslinger3, David Gill4, Bing Zhang5, and Qing X Yang1

1Radiology, Pennsylvania State College of Medicine, Hershey, PA, United States, 2Hangzhou Normal University, Hangzhou, Zhejiang, China, 3Neurology, Pennsylvania State College of Medicine, PA, United States, 4Unity Rehabilitation and Neurology at Ridgeway, NY, United States, 5Radiology, Nanjing university medical school, Nanjing, China

Introduction: Early diagnosis and understanding of the neural networks in Alzheimer’s disease (AD) are key in slowing the progression and unlocking a cure. Studies have shown decreased functional connectivity of the default mode network in patients with AD and this has been suggested as an early marker for AD (2-3). Pathological studies have established that the AD pathology (amyloid beta plaques and neurofibrillary tangles) is first found in the olfactory areas and that olfaction is affected in the early stages of AD and in mild cognitive impaired (MCI) patients (4-7). Therefore, in this study we hypothesized that the primary olfactory cortex (POC) will show decreased functional connectivity in the AD and MCI subjects compared to cognitively normal controls (CN).

Methods: Cognitive tests and the University of Pennsylvania Smell Identification Test (UPSIT) were administered to all subjects. The subject population included 27 CN (mean age= 69.5 years, 15 females), 21 MCI (mean age= 73.2 years, 11 females), and 15 AD patients (mean age= 71.9 years, 10 females). There were no significant group differences in age, gender, or education. Then functional Magnetic Resonance Imaging (fMRI) was utilized to study the blood oxygen level dependent signal change in the POC. T1 MPRAGE images were collected for the anatomical underlay and EPI was acquired for the functional data on a 3 T Siemens Scanner. Lavender was used as the odorant. During the paradigm the subjects were asked to respond using a button press if they smelled lavender or if they did not smell lavender when the visual stimulus appeared on the screen (Fig. 1). DPARSFa and SPM8 were utilized to analyze the fMRI data and the seed regions (the left and right POC) were defined using coordinates based on previous manual segmentation of the POC. The seed was 6 mm in diameter. GraphPad Prism 6 was used for statistical analysis of the cognitive and UPSIT data.

Results: Figure 2 shows one sample t-tests of the areas that correlated with the left and right POC in each of the three groups (CN: P < 0.001, FWE; MCI and AD: P < 0.05, FWE) during the olfactory fMRI. ANOVA analysis (P < 0.05, FWE) showed significant group differences with the AD and MCI groups having significantly less functional connectivity of the left and right POC compared to the CN. There was decreased connectivity to the hippocampus, the reward network (caudate, putamen, nucleus accumbens), to the prefrontal cortex, and the default mode network for both the left and right POC. A greater functional connectivity was found in the left POC than the right POC in the CN. Decreased performance on the UPSIT was also observed for the AD and MCI groups compared to the CN. The UPSIT also showed decreased UPSIT scores for the AD group compared to the MCI subjects.

Discussion: Using functional connectivity analysis on our olfactory paradigm, we have shown that the POC has decreased functional connectivity to the reward network, default mode network, and the hippocampus in both the MCI and AD subjects. Interestingly, the MCI and AD subjects exhibit a prominent trend of loss of functional connectivity to the contralateral hemisphere. This supports the hypothesis that the loss of connectivity between the two hemispheres leads from cognitive decline to dementia in AD. Lateralization was also present in our subjects, the left POC displayed greater functional connectivity compared to the right POC. Our results suggest that the POC connects to many important functional networks involving memory, emotion, and cognition. Thus, AD pathology in the POC plays a central role for various functional deficits in addition to olfaction. Therefore, the POC is an important ROI to study in AD.

Conclusion: Utilizing olfactory fMRI, our study shows that the POC is involved in AD and most importantly in MCI. Our results also show that functional connectivity changes occur prior to cognitive and olfactory symptoms in MCI subjects. Therefore, the POC is an important region to study and together with fMRI may provide an early diagnostic marker.

Acknowledgments: Funding has been provided by NIH R01-AG027771.

References: