High Cellularity Subvolume in Glioblastoma identified by High b-value Diffusion Weighted Images

Priyanka P Pramanik, Hemant A Parmar, Aaron G Mammoser, Larry R Junck, Theodore S Lawrence, Christina I Tsien, and Yue Cao

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States, Department of Radiology, University of Michigan, Ann Arbor, MI, United States, Department of Neurology, University of Michigan, Ann Arbor, MI, United States

Target Audience: Clinicians and scientists interested in advanced analysis of high b-value diffusion-weighted imaging to differentiate high cellularity components of glioblastoma from edema

Purpose: The blood-brain(tumor)-barrier could have an impact on therapeutic efficacy of glioblastoma (GB), particularly in the non-enhanced subvolume, by limiting the amount of temozolomide (TMZ) that reaches tumor cells. It is a challenge to differentiate the non-enhanced solid tumor from edema using conventional FLAIR and ADC (b ≤ 1000 s/mm$^2$) images. This study aimed to develop and investigate a method to identify the high cellularity component of GB by using high b-value diffusion weighted (DW) images and mean intravoxel diffusion kurtosis, and to relate them to the pattern of treatment failure.

Methods: Sixteen patients (age: 24-77 years) with GB had MRI scans prior to concurrent TMZ and radiation therapy (RT). DW images were acquired in 3 orthogonal directions with b-values of 0, 1000, and 3000 s/mm$^2$. Mean intravoxel diffusion kurtosis (DK) and diffusion coefficient (D) were calculated [1]. Gross tumor volumes defined on post-contrast T1-weighted (GTV-Gd) and T2 FLAIR images (GTV-FLAIR) were used for RT planning. Using the high b-value (3000 s/mm$^2$) DW images, in which fluid, edema, grey matter, and white matter, to an extent, are suppressed (Fig 1), the high cellularity abnormality volume (HCAV) of each patient was determined by a threshold (mean intensity + 2SD) obtained from a VOI in normal-appearing tissue and contralateral to the tumor. After co-registration of DW, FLAIR and post-contrast T1-weighted images pre RT, planned dose volumes and MRI at recurrence, spatial overlaps of the HCAV with the GTV-Gd, GTV-FLAIR, 95% radiation dose volume and pattern of failure were compared.

Results and Discussion: The HCAVs varied from 0.1 to 67.1 cc with a median of 6.1 cc. The HCAVs overlapped with the GTVs-Gd from 3% to 97% (a median of 57%), indicating that major portions of the HCAVs were non-enhanced. The HCAVs extended beyond the GTVs-FLAIR in 6 patients. In 3 patients, the 95% prescribed radiation dose volumes covered less than 95% of the HCAVs (70%, 62% and 23%). Of the 8 patients who had recurrence, three had non-central recurrence (in-field, marginal and distant for each), of whom 2 had less than 95% spatial coverage of their HCAVs by the 95% dose volumes, indicating that the HCAV shows high risk for non-central recurrence. Interestingly, the intensity differences between the HCAVs and the control VOIs were not significant for D and DK (p > 0.1, paired t-test) indicating their limited roles for extracting the HCAV.

Conclusion: High b-value DW imaging could provide a means to extract the high cellularity components of GB and aid in RT target volume definition. Further follow-ups will allow us to investigate the probability of treatment failure in relation to the non-enhanced high cellularity in GB and radiation doses.

Acknowledgements: Supported by NIH grant R01 NS064973