Multi-parametric assessment of vascular reactivity in peripheral artery disease

Erin K Englund1, Michael C Langham2, Thomas F Floyd3, Felix W Wehrli4, and Emile R Mohler III5
1Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States, 2Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States, 3Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States, 4Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States

Introduction: Peripheral artery disease (PAD), a manifestation of atherosclerosis in vessels supplying the lower limbs, causes significant morbidity and mortality [1]. The traditional marker of disease severity is the ankle-brachial index (ABI), which is the ratio of systolic blood pressure measured at the ankle and brachial artery. A reduction in ABI signifies the presence of stenoses in the macrovasculature, and even though this defines the diagnosis of PAD, the ABI does not specify spatial location of disease, is not sensitive to microvascular impairment, and cannot detect improvements due to pharmacologic or exercise therapy [2,3].

Recent studies suggest that functional deficits present in patients with PAD may be detected by dynamic imaging of the lower extremity using MRI [4-7]. Similar to cardiac stress testing, the peripheral vascular reactivity can be interrogated by measuring the rate of recovery following induced ischemia. Studies evaluating response to reactive hyperemia show PAD patients exhibit a blunted and delayed reperfusion [4], and a reduction in the rate of recovery of tissue oxygenation as evidenced by dynamic measurement of venous oxygen saturation (SvO2) [5], and skeletal muscle T2* [6], which is a marker of tissue oxygenation [6,7].

Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT), a recently developed technique [8], allows for simultaneous, temporally resolved measurement of perfusion, SvO2, and T2* by interleaving a multi-echo GRE into the post-labeling delay of a pulsed arterial spin labeling (PASL) sequence. From the multi-echo GRE data, SvO2 and T2* are quantified; the difference in phase accrual between the vein and tissue in the first two echoes are used to calculate SvO2 [9], and the amplitude from echoes 2-5 are fitted to a mono-exponential function to calculate T2*. For PASL data, the normalized difference between images acquired following slice-selective or non-selective inversion is used to quantify perfusion [10]. Each parameter is quantified at 2-second temporal resolution. This multi-parameter approach may enhance the power for detection of disease or response to therapeutic intervention. The purpose of this study was to determine whether a relationship exists between ABI and dynamic indices of vascular reactivity measured with PIVOT.

Methods: 48 patients (30 male, 62±8 years old) with PAD underwent ABI measurement, a treadmill-walking test using the Gardner protocol [11], and MRI. The Gardner protocol requires the patient to walk on a treadmill at 2 mph, initially with zero incline for two minutes, followed by an incline increase of 2 grades every 2 minutes thereafter. Patients indicated when they initially felt pain (claudication onset time, COT), and when they felt they could no longer walk due to the severity of pain (peak walking time, PWT). The MRI protocol consisted of dynamic imaging using PIVOT continuously throughout one minute of baseline, five minutes of proximal arterial occlusion, and six minutes of post-ischemic recovery. Data were acquired with an 8-ch Tx/Rx knee coil at 3T. Ischemia was induced via proximal arterial occlusion by inflating a cuff around the thigh to 75 mmHg above the systolic blood pressure. Perfusion was quantified in a region of interest in the soleus muscle, and peak hyperemic flow (PHF) and time to peak perfusion (TTP) were recorded. SvO2 was measured in the larger peroneal vein, and washout time (time to minimum SvO2) was recorded. T2* was quantified in the soleus, normalized to a region of interest in the soleus muscle, and peak hyperemic flow (PHF) and time to peak perfusion (TTP) were recorded. SvO2 was measured in the larger peroneal vein, and washout time (time to minimum SvO2) was recorded. T2* was quantified in the soleus, normalized to the average baseline value, and the relative T2* min, T2* max, and time to peak T2* (TTP2*) were recorded.

Results: Figure 1 shows the perfusion, SvO2, and T2* time courses measured with PIVOT from a representative subject. Patients were grouped into severe (ABI<0.5), moderate (ABI between 0.5 and 0.7), and mild (ABI between 0.7 and 0.9) disease. Table 1 lists the mean (standard deviation) of quantified time course parameters from PIVOT or from the treadmill-walking test. No correlation was seen between ABI and indices of functional disease impairment measured by treadmill-walking test, however significant correlations were found between ABI and both perfusion TTP and TTP2* (Figure 2 a-c). Additionally a Student’s t-test showed significant differences between mild and moderate, mild and severe, and moderate and severe PAD for TTP and TTP2*. No correlation was found between ABI and the magnitude of PIVOT changes (PHF, T2* min, or T2* max), nor was a correlation seen between COT or PWT and any of the time-course derived metrics from PIVOT data.

Table 1. Mean (standard deviation) time-course parameters in severe (n = 7), moderate (n = 27), and mild (n = 14) PAD. p<0.05 for a Student’s t-test comparing moderate to severe (%), mild to severe (%), and mild to moderate (+).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ABI Group</th>
<th>COT (min)</th>
<th>PWT (min)</th>
<th>PHF (mL/min/100g)</th>
<th>TTP (s)</th>
<th>Washout time (s)</th>
<th>Relative T2* min (%)</th>
<th>Relative T2* max (%)</th>
<th>TTP 2* (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>0.42 (0.05)</td>
<td>4.3 (2.6)</td>
<td>7.8 (3.0)</td>
<td>33.3 (13.3)</td>
<td>113 (34)</td>
<td>46 (30)</td>
<td>90.4 (6.6)</td>
<td>105.4 (2.8)</td>
<td>119 (46)</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.39 (0.05)</td>
<td>3.2 (1.9)</td>
<td>6.2 (3.1)</td>
<td>29.9 (13.9)</td>
<td>64 (29)*</td>
<td>34 (19)</td>
<td>92.1 (7.9)</td>
<td>102.7 (2.7)</td>
<td>82 (46)*</td>
</tr>
<tr>
<td>Mild</td>
<td>0.79 (0.07)</td>
<td>2.5 (1.7)</td>
<td>7.8 (5.9)</td>
<td>29.6 (14.2)</td>
<td>42 (15)*</td>
<td>23 (11)*</td>
<td>95.7 (2.5)*</td>
<td>106.2 (3.4)</td>
<td>56 (14)*</td>
</tr>
</tbody>
</table>

Discussion: Overall, a blunted and delayed hyperemic response is observed compared to a previous study using the same technique in young healthy subjects [8]. While COT and PWT represent the most physiologically relevant parameters for patients with PAD, they are subjective markers that depend upon patient pain tolerance. Thus, the lack of association between ABI or PIVOT-derived parameters and the treadmill walking times is not unexpected. The inverse correlation between ABI and perfusion TTP has been observed in a previous study using continuous ASL (CASL) [4]. With CASL, temporal resolution of perfusion was limited to 16 s, however using PIVOT, each parameter is sampled every 2 seconds. Since TTP in healthy subjects can be under 20 s [8], this improvement in temporal resolution is highly necessary. Wu, et al. also reported a progressive decline in PHF in patients with severe disease [4]. A correlation between ABI and the magnitude of response in any of the PIVOT-derived parameters has not been observed in this population, though a significant difference in T2* min was detected between mild and severe disease. Recruitment is ongoing, and the added value of monitoring the dynamics of perfusion, SvO2, and T2* recovery concurrently will be assessed through statistical models.

Conclusion: The function of the peripheral microvasculature can be interrogated in PAD patients by dynamic measurement of perfusion, SvO2, and T2* using PIVOT.