Are blood flow measurements by means of Transcranial Doppler valid under different levels of end-tidal CO2? A high resolution MRI study at 7 Tesla of the middle cerebral artery diameter under hypo- and hypercapnic conditions

Jasper Verbree1,2, Eidrees Ghariq1, Anne-Sophie Bronswaer3, Maarten Versluis1,2, Mat Daemen1, Mark van Buchem1, Albert Dahan1, Johannes van Lieshout1,4, and Matthias van Osch1,2

1Radiology, Leiden University Medical Center, Leiden, Netherlands, 2C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, Netherlands, 3Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, Netherlands, 4Internal Medicine, Academic Medical Center, Amsterdam, Netherlands, 5Pathology, Academic Medical Center, Amsterdam, Netherlands, 6Anesthesiology, Leiden University Medical Center, Leiden, Netherlands

TARGET AUDIENCE – Researchers in the field of cerebrovascular reactivity and Transcranial Doppler

PURPOSE – Transcranial Doppler (TCD) is a widely used and non-invasive measurement technique for cerebral blood flow velocity employed to monitor physiological responses. Velocity measured before and after a challenge, such as hypercapnia, sit-to-stand or head-up-tilt, are often interpreted as cerebral blood flow changes, assuming a constant vessel diameter. However, carbon dioxide (CO2) is a potent vasodilator and is not only frequently exploited as a physiological stimulus, but is also known to vary during many other challenges. It could therefore be hypothesized that the assumption of constant diameter does not hold true during end-tidal CO2-fluctuations (PetCO2), although previous studies have been inconsistent. The purpose of the current study was to investigate whether the diameter of the middle cerebral artery (MCA) changes upon PetCO2 variations and if so to obtain a calibration curve for MCA-diameter changes as a function of ΔPetCO2. Such a calibration curve could be used to translate TCD velocity measurements more accurately into cerebral blood flow.

METHODS – Subjects: Nine healthy subjects (aged 21–30 years, 5 male, 4 female) were included, written informed consent was obtained and the protocol was approved by the local IRB. Subjects were asked to refrain from eating and drinking for two hours prior to the experiment. Measurements: An air mixture containing 21% oxygen, nitrogen and CO2 varying from 0 to 8% was administered to the subject through a silicon face mask. PetCO2 was measured with a cannula attached to the face mask and connected to a capnograph (Capnomac Ultima, Datec). Protocol: Four levels of PetCO2, relative to the resting PetCO2, were administered to the subjects: -1 kPa (hypocapnia), 0 kPa (normocapnia), +1 (mild) and +2 kPa (moderate hypercapnia). The order of PetCO2-administration was randomized over subjects and PetCO2 was kept constant while scanning. MRI acquisition: Measurements were performed on a 7 Tesla Philips MRI system. The MCA was located on orthogonally reconstructed axial 3D T1 scans. Subsequently, the high resolution 2D scan was positioned perpendicular to the MCA. To account for subject motion two dynamics were acquired. The dynamic with the better image quality was used in the event of subject motion, otherwise the average was used. Imaging parameters were: black blood T2 Fast Spin Echo (FSE), TR/TE = 2000/116 ms, refocusing angle = 110°, FOV 240x180x5 mm, acquisition matrix 1200x900, voxel size 0.20x0.20x5.0 mm, FSE factor 12 with 4 startup echoes, scan duration ~5 min. Data analysis: Two independent observers, blinded to subject and CO2-level, delineated the vessel lumen by means of an ellipse. Observer agreement was assessed with the Intraclass Correlation Coefficient (ICC), whereas vessel diameter and PetCO2 were analysed with one-way repeated measures ANOVA. To be able to compare diameter changes between subjects, the diameters for each subject were normalized to the mean diameter for that subject. Polynomial models up to 4th order were fitted to the relative diameter versus ΔCO2 and goodness-of-fit was assessed with the R-square (R²) statistic adjusted for degrees of freedom.

RESULTS – All nine subjects completed the study; one scan at the moderate hypercapnia level was excluded from analysis due to poor image quality. Baseline PetCO2 was 4.9±0.5 kPa, and the four induced PetCO2 levels were 3.9±0.5, 5.1±0.6, 6.0±0.6 and 6.8±0.6 kPa. An example of a high resolution image of the MCA is shown in Figure 1A. The between-observer agreement was high, ICC=0.93, however there was a systematic difference of 0.16 mm (p<0.02, 5.1±0.6, 6.0±0.6 and 6.8±0.6 kPa. An example of a high resolution image of the MCA is shown in Figure 1A. The best fit was obtained for a quadratic model, y = 0.013x², which significantly from hypo-, normo- and mild hypercapnia (F(3,21)=18.1, p<0.05, Dunn-Sidak corrected), however no significant change was found for moderate hypercapnia. Post-hoc tests indicate that the normalized diameter at moderate hypercapnia differed significantly from hypo-, normo- and mild hypercapnia (F(3,21)=18.1, p<0.05, Dunn-Sidak corrected), however no other differences were found. The best fit was obtained for a quadratic model, y = 0.013x² + 0.015x + 0.98, with an adjusted R² of 0.63 (linear, cubic and 4th order models had an adj-R² of 0.50, 0.62 and 0.60 respectively).

DISCUSSION - This study indicates that moderate, but not mild, hypercapnia increases the MCA diameter in humans. No change was observed during hypocapnia. The observed trend can be approximated by a quadratic function of ΔPetCO2 shown in Figure 1C. For example, neglecting diameter changes of the MCA while increasing ΔPetCO2 from normocapnia to +2 kPa, would lead to an underestimation of the cerebral blood flow change by 17% (95% CI=11-22%).

CONCLUSION – When interpreting cerebral blood flow velocity changes measured with TCD as a proxy for cerebral blood flow changes, care must be taken since the assumption of constant MCA-diameter does not hold true when PetCO2-changes approach moderate hypercapnia. In that case, no direct coupling between flow and flow velocity can be assumed and therefore we propose the use of a quadratic model to take MCA-diameter changes into account when translating blood flow velocity into blood flow changes under various levels of end-tidal CO2.