Free-Breathing Whole-Heart Coronary MRI: An Image-based Motion Compensation Integrated into Compressed-Sensing Reconstruction

Christoph Forman1,2, Robert Grimm1, Jana Hutter1,2, Jakob Waśza1, Martin Kraus1,2, Joachim Hornegger1,2, and Michael O. Zenge3
1Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; 2Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; 3Healthcare Sector, Siemens AG, Erlangen, Germany

INTRODUCTION – Respiratory motion compensation has been an active field of research in whole-heart coronary magnetic resonance angiography (CMRA) for many years. Most recently, non-rigid registration was integrated into iterative reconstruction [1] and promising initial results were demonstrated for whole-heart CMRA in [2, 3]. These methods, however, use 2-D navigators to estimate the motion pattern. A compressed sensing (CS) method which was introduced last year seems to be a promising alternative [4]. This method features a motion-compensated reconstruction after binning of the input data, utilizing the principle of self-navigation [5, 6]. Whereas only a subset of the acquired data was reconstructed in a weighted fashion in the original version, this method was now extended to integrate non-rigid registration and, thus, taking more of the acquired data into account. In-vivo experiments were performed on seven healthy volunteers and the resulting image quality was compared to the result of the weighted CS reconstruction and a navigator-gated reference scan.

MATERIALS and METHODS – In the current work, free breathing whole-heart coronary MRI featuring 3D volume-selective, incoherent Cartesian sampling was performed in the sagittal orientation. As a first step of the image reconstruction, binning of the input data was performed as described in [4]. Next, not only the first but all acquired data featuring a net acceleration of less than 10.0 were reconstructed iteratively using the weighted CS. After this, a motion model was estimated from the resulting volumes using non-rigid symmetric diffeomorphic image registration [7]. Finally, this enabled the reconstruction of input data also from other respiratory phases by minimizing the cost function incorporating the motion model with a quasi-Newton optimizer and fast pixel-wise operations [1]:

\[\arg \min_x \sum_j \sum_i \left\| M_j F_C U_j x - y_{i,j} \right\|_2^2 + \lambda |x|_{TV} \]

Here, \(U_j \) represents the deformation field to model the motion during the acquisition of data \(y_{i,j} \), with the sampling pattern \(M_j \) for all respiratory phases \(j \) to reconstruct the motion-free image \(x \) with the Fourier transform \(F \) and the estimated coil sensitivities \(C_i \) for the \(i \)-th coil.

In-vivo experiments were performed on a 1.5 T clinical MR scanner (MAGNETOM Aera, Siemens AG, Healthcare Sector, Erlangen, Germany) on 7 healthy volunteers with T2-prepared, fat-saturated, ECG-gated, balanced-SSFP imaging; TR/TE 4.0/2.0 ms, \(\alpha = 90^\circ \), FOV 270x270x150 mm\(^3\), matrix 256x256x144, voxel-size 1.05 mm\(^3\) and a receiver bandwidth of 849 Hz/Px. Signal reception was performed using an 18-channel body array coil and 8 elements of a spine array coil. The data acquisition was segmented over 398 heartbeats. Within each heartbeat one SI-projection was acquired prior to 30 readouts used for imaging. The proposed method was compared to a navigator-gated acquisition with 254 segments of 30 readouts and an acceptance window of 5 mm placed in end-expiration. The datasets were reformatted using CoronaViz (work-in-progress software, Siemens Corporate Research, Princeton, NJ, USA). For evaluation, image quality was quantitatively measured by computing vessel sharpness of the RCA as described by [8].

RESULTS and DISCUSSION – Navigator-gated as well as self-navigating acquisitions finished successfully for all volunteers. The average navigator acceptance rate of 0.60±0.11 prolonged the acquisition time to 9.2±3.3 min, which was reduced with the proposed motion correction, (b) with weighted CS reconstruction, (c) with the proposed method, and (d) a navigator-gated reference. The reconstructed images without motion compensation suffered from artifacts due to respiration, which also affected the sharpness of the right coronary vessels (0.56±0.07). Weighting the reconstruction to one respiratory phase minimized the artifacts due to motion, which improved the average vessel sharpness to 0.68±0.10. In the proposed method, data from other respiratory phases were incorporated into image reconstruction by utilizing the motion model, thus reducing the degree of k-space undersampling. This led to a further improvement of vessel sharpness to 0.72±0.07. The results of the proposed method were comparable to the navigator gated reference (0.71±0.17). However, the new method involves time-consuming computations, which would benefit from optimization and GPU implementations to meet current clinical needs.

CONCLUSIONS – The proposed reconstruction method was designed to compensate for k-space undersampling and minimizes respiratory motion artifacts by incorporating data from other respiratory phases into image reconstruction. The required motion model is derived by a weighted CS reconstruction for individual respiratory phases of the acquired data of the actual scan and, thus, requires no acquisition of navigator echoes or other additional data.

ACKNOWLEDGEMENTS – The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

DISCLAIMER – The concepts and information presented in this paper are based on research and are not commercially available.

Figure 1: Reformatted images of the RCA reconstructed with (a) no motion correction, (b) weighted CS reconstruction to one respiratory phase, (c) motion-compensated reconstruction incorporating the motion model and (d) a navigator-gated reference.