Intracellular Redox State Revealed by 31P MR Spectroscopy Measurement of NAD$^+$ and NADH Contents In Vivo
Ming Lu1,2, Xiao-Hong Zhu1,2, Yi Zhang1,2, and Wei Chen1,2

1Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States; 2Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States

Introduction
As an important coenzyme, nicotinamide adenine dinucleotide (NAD) plays key roles in energy metabolism in all living cells (1). The conversion between its reduced form (NADH) and oxidized form (NAD$^+$) occurs in all redox reactions catalyzed by NAD-dependent dehydrogenase, including the major metabolic pathways in glycolysis, TCA cycle and electron transport chain. Intracellular redox state (RX) defined by the NAD$^+/NADH$ ratio is considered reflecting the cellular metabolic status and function, and it fluctuates in response to alterations in metabolism, such as aging, diabetes and cancer (2). To date, there have been only two invasive approaches available for assessment of the intracellular RX: the biochemical analysis using tissue/cell extraction and the autofluorescence detection of NADH (3). A non-invasive approach for directly measuring RX has been unavailable. In this study, we developed a novel 31P MRS-based method for non-invasive quantification of NAD$^+$ and NADH contents in vivo. We report here for the first time the feasibility of direct measuring NAD$^+$ and NADH contents in vivo was revealed in this study. The same approach could readily be applied to study healthy or diseased human brains or other organs.

Theory and Method
The molecular structure of NAD$^+$ is identical to that of NADH except for the positive charge on the nitrogen atom in the nicotinamide. However, this positive charge discriminates the nuclear shielding of the two phosphorus atoms in the NAD$^+$. Thus, according to NMR principle, NAD$^+$ is a two-spin system and its 31P spectrum exhibits a quartet resulting from the J coupling effect, whereas NADH presents a singlet. Since the frequency separation between the two phosphorus spins of NAD$^+$ was found to be similar in magnitude to the j_{p} coupling constant (see Figure 1), NAD$^+$ yields a second-order coupling spectrum. Based on the NMR theory of second order-effect and chemical shift information extracted from the high-resolution spectrum of NAD$^+$ solution obtained at 11.7T (Figure 1C), the RX of NAD$^+$ can be calculated at any given field strength via Lorentzian simulations (Figure 1B). Thus, a quantification model for description of resonance signals of NAD$^+$, NADH and α-ATP at a magnetic field strength of interest through linear addition of Lorentzian functions was developed. By least-square fitting of the model outputs to the resonance signals obtained from in vivo 31P spectrum, signal intensity and linewidth of each phosphorus peak can be determined. The cerebral contents of NAD$^+$ and NADH were quantified by normalizing their peak integrations to that of α-ATP, which has a stable, known pool size of ~2.8 mM in normal brain. All the in vivo 31P MRS measurements were conducted on either a 9.4T/31 cm or a 16.4T/26 cm horizontal bore magnet interfaced to VNMRJ console. Surface-coil localized 31P MR spectra of normal cat brains were acquired at either 162 MHz (for 9.4T, N=6) or 283 MHz (for 16.4T, N=7) using single-pulse-acquire sequence with 16 s (9.4T) or 3–16 s (16.4T) repetition time, 5.2 kHz (9.4T) or 8 kHz (16.4T) spectral width, 0.058 s (9.4T) or 0.064 s (16.4T) acquisition time, and 64 (9.4T) or 40–64 (16.4T) signal averages. Raw FID signals were converted into frequency domain spectra by Fourier transformation following the application of a linear filter with 10 Hz line broadening to enhance SNR. In vivo T_1 values of NAD$^+$ and NADH were measured in cat brains at fully relaxed conditions using inversion recovery pulse sequence at both field strengths.

Results
As shown in Figure 2AaB, model simulations of NAD$^+$ and NADH resonance signals were highly comparable to the 31P NMR spectra of their phantom solutions at 11.7T. NAD$^+$ signal evolved from quartet to doublet when increasing line broadening (from top to bottom in Figure 2Aa) or linewidth (from top to bottom in Figure 2Bb) values were applied. Figure 2C illustrated simulations to mimic the in vivo spectra of NAD$^+$ and NADH at both 9.4T (upper) and 16.4T (lower panel). Representative surface-coil localized in vivo 31P spectra of normal cat brains were shown in Figure 3. All the resonance signals of NAD$^+$, NADH and α-ATP were satisfactorily fitted at both field strengths, as reflected by the small residues between the original spectra and model fittings. RX (2.6~3.0) and absolute contents of NAD$^+$ (0.38–0.39 mM), NADH (0.14–0.15 mM) and total NAD (0.52–0.54 mM) were obtained. As shown in Figure 4, our results indicated similar T_1 values of NAD$^+$ and NADH in normal cat brains at either magnetic field (1.58 s vs. 1.50 s at 9.4T; 0.82 s vs. 0.87 s at 16.4T).

Conclusion
The new 31P MRS approach allows direct and reliable measurements of NAD$^+$ and NADH contents in vivo. For the first time, it provides an opportunity to non-invasively investigate the role of RX in brain functions and diseases. Also, it could readily be applied to study healthy or diseased human brains and other organs.

Acknowledgement
NIH grants NS41262, NS57560, NS70839, F41 RR08079, F41 EB015894, P30 NS076408, S10 RR025031; Keck foundation. **References**