Discussion — There is a novel workflow for the acquisition and processing of metabolomic ^{1}H NMR data from human blood plasma.

Results — Fig 1A shows a typical ^{1}H NMR spectrum from human blood plasma with low diffusion sensitization ($b = 0.01 \text{ ms/um}^2$) and Fig 1B shows a typical ^{1}H NMR spectrum from human blood plasma with high diffusion sensitization ($b = 15 \text{ ms/um}^2$).

Methods — All experiments were performed on a Bruker 500 MHz magnet equipped with triple-axis gradients. The MR pulse sequence consisted of an adiabatic double-quick pulse with a water inversion time TR of 6,000/3,000 ms for low/high b-value acquisitions.

Introduction — Blood plasma is ready to become a high throughput technique for metabolomic studies. The experimental difference (^{1}H) NMR has been a popular technique to detect several dozen metabolites. ^{1}H NMR has been a popular technique to detect several dozen metabolites. ^{1}H NMR has often led to ambiguities in quantification when spectral integration or binning is used. Here we present an extension of a previously described method to separate metabolites, but is also a time and labor-intensive procedure. Secondly, spectral overlap with all metabolite resonances. (B) Experimental spectrum acquired with low diffusion sensitivity ($b = 0.01 \text{ ms/um}^2$) and fitted ($b = 15 \text{ ms/um}^2$). Signals from low molecular weight metabolites are eliminated, leaving only lipoprotein signals. (C) Spectral decomposition of (B) into a limited number of Gaussian lines. The individual lipoprotein signal amplitudes are held constant. (D) = (A). (E) Fitted spectrum acquired with low diffusion sensitivity ($b = 0.01 \text{ ms/um}^2$), only the Gaussian lines are used to provide the best fit. (F) Residual between (D) and (E) = (F).

Discussion — There is a novel workflow for the acquisition and processing of metabolomic ^{1}H NMR data from human blood plasma.

Results — Fig 1A shows a typical ^{1}H NMR spectrum from human blood plasma with low diffusion sensitization ($b = 0.01 \text{ ms/um}^2$) and Fig 1B shows a typical ^{1}H NMR spectrum from human blood plasma with high diffusion sensitization ($b = 15 \text{ ms/um}^2$).

Methods — All experiments were performed on a Bruker 500 MHz magnet equipped with triple-axis gradients. The MR pulse sequence consisted of an adiabatic double-quick pulse with a water inversion time TR of 6,000/3,000 ms for low/high b-value acquisitions.

Introduction — Blood plasma is ready to become a high throughput technique for metabolomic studies. The experimental difference (^{1}H) NMR has been a popular technique to detect several dozen metabolites. ^{1}H NMR has often led to ambiguities in quantification when spectral integration or binning is used. Here we present an extension of a previously described method to separate metabolites, but is also a time and labor-intensive procedure. Secondly, spectral overlap with all metabolite resonances. (B) Experimental spectrum acquired with low diffusion sensitivity ($b = 0.01 \text{ ms/um}^2$) and fitted ($b = 15 \text{ ms/um}^2$). Signals from low molecular weight metabolites are eliminated, leaving only lipoprotein signals. (C) Spectral decomposition of (B) into a limited number of Gaussian lines. The individual lipoprotein signal amplitudes are held constant. (D) = (A). (E) Fitted spectrum acquired with low diffusion sensitivity ($b = 0.01 \text{ ms/um}^2$), only the Gaussian lines are used to provide the best fit. (F) Residual between (D) and (E) = (F).

Discussion — There is a novel workflow for the acquisition and processing of metabolomic ^{1}H NMR data from human blood plasma.

Results — Fig 1A shows a typical ^{1}H NMR spectrum from human blood plasma with low diffusion sensitization ($b = 0.01 \text{ ms/um}^2$) and Fig 1B shows a typical ^{1}H NMR spectrum from human blood plasma with high diffusion sensitization ($b = 15 \text{ ms/um}^2$).

Methods — All experiments were performed on a Bruker 500 MHz magnet equipped with triple-axis gradients. The MR pulse sequence consisted of an adiabatic double-quick pulse with a water inversion time TR of 6,000/3,000 ms for low/high b-value acquisitions.

Discussion — There is a novel workflow for the acquisition and processing of metabolomic ^{1}H NMR data from human blood plasma.

Results — Fig 1A shows a typical ^{1}H NMR spectrum from human blood plasma with low diffusion sensitization ($b = 0.01 \text{ ms/um}^2$) and Fig 1B shows a typical ^{1}H NMR spectrum from human blood plasma with high diffusion sensitization ($b = 15 \text{ ms/um}^2$).

Methods — All experiments were performed on a Bruker 500 MHz magnet equipped with triple-axis gradients. The MR pulse sequence consisted of an adiabatic double-quick pulse with a water inversion time TR of 6,000/3,000 ms for low/high b-value acquisitions.

Discussion — There is a novel workflow for the acquisition and processing of metabolomic ^{1}H NMR data from human blood plasma.

Results — Fig 1A shows a typical ^{1}H NMR spectrum from human blood plasma with low diffusion sensitization ($b = 0.01 \text{ ms/um}^2$) and Fig 1B shows a typical ^{1}H NMR spectrum from human blood plasma with high diffusion sensitization ($b = 15 \text{ ms/um}^2$).

Methods — All experiments were performed on a Bruker 500 MHz magnet equipped with triple-axis gradients. The MR pulse sequence consisted of an adiabatic double-quick pulse with a water inversion time TR of 6,000/3,000 ms for low/high b-value acquisitions.