Glycogen chemical exchange effects in 1H-MRS and glyco-CEST at 3T and 7T

Ronald Ouwerkerk1, Yee Kai Tee2, and Craig K Jones1,3

1Biomedical and Metabolic Imaging Branch, NIH/NIDDK, Bethesda, MD, United States, 2Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom, 3F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States, 4Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

Introduction

Understanding the regulation of glucose storage in glycogen is a crucial element for uncovering the cause of obesity or diabetes type II. Glycogen can be observed with 1H-MRS in the liver(1), or with 1H CEST-MRI in muscle (2). However, concentrations measured with 1H-MRS (1) are lower than reported for biopsy (3) or 1C-NMR (4). The chemical exchange mechanism that is the basis of glycoCEST (5) could reduce the glycogen signals in water-suppressed 1H-MRS. We investigated the effect of water suppression (WS) RF power on 1H-MR spectra of glycogen phantoms using the exact sequence used for in-vivo 1H-MRS quantification of glycogen in the human liver(1). The effect of water suppression offset was examined using the z-spectra of glycoCEST on a series of phantoms with varying glycogen concentrations in physiological buffers.

Materials and Methods

Single volume PRESS glycogen spectra were recorded on a Siemens Verio 3T MRI scanner with 2x2x2cm single volume PRESS (6) at TR=6s as described in ref (1). Glycogen phantoms with seven different glycogen concentrations were prepared from two separate batches of Bovine glycogen (Sigma, Aldrich, St. Louis, MO). The samples were dissolved in a potassium chloride and phosphate buffer (KCl: 110 NaCl, K$_2$HPO$_4$: 7, KH$_2$PO$_4$: 3 mmol/l, pH 7.14 at 37º) and dialyzed against this solution to remove residual ethanol. Plastic centrifuge tubes with 50ml of these solutions were immersed in a 3 liter insulated water bath, kept between 38º and 36º C. The RF power on all WS pulses was varied between 0 and 3 and the optimal WS power setting and both residual water and glycogen signals were quantified. Time domain signals were fitted with AMARES (7) to Gaussian line phases of all signals constrained to the fitted zero-order phase. Glycogen concentration was calculated from the summed area of nine fitted resonances in the area between 3.5 and 4.2 ppm and corrected for T$_2$ relaxation of water and glycogen as described in (1). Glyco-CEST images were recorded on a Philips 7T scanner using a train of ten 50 ms Gaussian pulses at 2 MHz power level. The saturation pulse was applied from -5 ppm to 5 ppm in 59 steps plus one unsaturated image. The z-spectra were corrected for water resonance offset. The MTR asymmetry was quantified by subtracting the downfield side from the upfield side. The glycoCEST signal was taken as the signal at 0.9 ppm in the MTR asymmetry.

Results and discussion

Varying the water suppression power showed a light decrease of the H1 proton signal with increasing water saturation power (fig 2). The summed signals of the other glycogen protons could not be accurately quantified in the presence of large residual water peaks as found with RF power scale below 0.5 and around 2. Quantification of these peaks with AMARES was hindered by vibration artifacts spurious echo signals and rolling baseline. These signals did not appear to diminish at higher water suppression powers. Thus, quantification based on the peaks in the 3.5-4.2 ppm region is harmful for quantification of glycogen deposits.

The glycineCEST experiments showed no concentration dependent effects downfield, whereas the MTR asymmetry correlated with the MRS estimated concentrations. MRS can complement glyco-CEST in providing information about local glycogen concentrations. Both methods can and should be used to study glycogen metabolism until more is known about spatial variations of glycogen deposits.

References:

Acknowledgements: This work was funded in part by NIH P41 EB015909