Labeling of Macrophages with novel Gadolinium Oxide Nanoparticles for In vivo Imaging of Inflammation
Gary R. Stinnett1, Minjung Cho1, Huagian Zhum2, Pedersen E. Steen1, Christeen Beeton1, Vicki L. Colvin3, and Robia G. Pautler1
1Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States, 2Chemistry, Rice, Houston, Texas, United States

Purpose: To label macrophage with novel T1 gadolinium oxide agent for in vivo tracking with MRI.

Background: Cell labeling with MR contrast agents has been a major focus of in vivo imaging. Labeling of cells with T2 agents has allowed the visualization of cell populations in vivo but precise concentration and location measurements remains challenging. 1 T1 labeling of cells is oftentimes preferable to T2 labeling because T1 contrast exudes positive contrast. Quality labeling of cells with T1 agents has been difficult due to toxicity, poor stability at physiological pH, and no standardized assay to easily determine targeted T1 agent efficacy in vivo. 2 We have synthesized and characterized novel PAMPS-LA coated Gd3O8 nanoparticles and imaged labeled macrophages at 9.4T.

Methods: Synthesis of gadolinium oxide nanoparticle: Particles were synthesized from Gd(NO3)3*6H2O oleic acid and 1-octadecene, purified by centrifugation, and dispersed in hexane solution. To make the lauryl acrylate-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS-LA) we dissolved 2-acrylamido-2-methylpropane sulfonic acid in DMF then lauryl acrylate (LA) monomers were added with photo initiator D1173 followed by photo-polymerization in a UV radiator. The particles were coated (PAMPS-LA) by introducing the coating into the Gd3O8 nanoparticle/ethyl ether solution followed by stirring and evaporation. The resultant was purified by ultracentrifugation and filtration.

Imaging Protocol: All images were obtained using a 9.4T, Bruker Avance BioSpec Spectrometer with a 21cm horizontal bore (Bruker BioSpin, Billerica, MA) and a 35mm resonator. Phantoms were imaged using a Rapid Acquisition with Refocused Echoes protocol with Variable Acquisition Time (RAREVTR) protocol to measure T1 relaxivity. Relative relaxivity is defined as contrast per particle and comparison between imaging parameters used for RAREVTR: TE=10ms, TR=200 - 9000ms, FOV=20mm, matrix size=128x128, taking 10mins, 33s and 600ms using Paravision 4.0 software (Bruker BioSpin, Billerica, MA). Obtained images were analyzed using Paravision 4.0 software. Graphs and statistics from MRI data and cell labeling were generated using Prism (GraphPad Software, San Diego, CA).

Cell Culture: The macrophage RAW 264.7 mouse leukemia cell line was used for labeling and viability tests of PAMPS-LA nanoparticles. Cells were incubated with DMEM plus 10% FBS with various concentrations of the agents for 24 hours (viability) or 2 hours (labeling). Viability was determined using a in triplicate and labeling was measured by comparing brightness of labeled cell pellets.

Results: Gadolinium oxide nanoshells coated with PAMPS-LA are water soluble and are stable in a pH range from 3-10. These nanoparticles’ relaxivity approaches that of Magnevist when imaged in PBS. Since these particles are being used for targeting the limiting factor for their usefulness is contrast per particle rather than the contrast per gadolinium ion demonstrated by relaxivity. Relative relaxivity is defined as contrast per particle and comparison between PAMPS-LA particles and Magnevist demonstrates that one PAMPS-LA nanoparticle has over 2000 times more contrast than one Magnevist molecule (figure 2). Raw 264.7 cells are viable when labeled in 100μM PAMPS-LA or less (Data not shown due to space). Cells labeled in 50μM for 2hr are significantly brighter than non-labeled cells (figure 3).

Conclusions: These agents provide high T1 relaxivity and their relaxivity per agent makes them excellent candidates for targeted imaging. With cells labeled with 50μM being significantly brighter than non-labeled cells, it is likely that we will be able to quantify the labeled cells in vivo.

References: