RECOVERING TSNR AND BOLD SENSITIVITY BY COMBINING HYPERBOLIC SECANT RF EXCITATION PULSES AND COMPENSATORY GRADIENTS

Stephen James Wastling1, David John Lythgoe2, and Gareth John Barker3
1Department of Neuroimaging, King’s College London, London, United Kingdom

Target audience: This work will be of interest to those using task-based and resting-state FMRI, acquired with gradient-echo echo-planar imaging, to investigate function in brain regions currently affected by signal dropout.

Purpose: FMRI data acquired using gradient-echo echo-planar imaging (GE-EPI) suffers from signal-dropout in the orbitofrontal cortex (OFC) and temporal lobes (TL) [1] caused by susceptibility gradients in the slice-selection, Gx,s, phase-encoding, Gy,s, and readout, Gz,s, directions. For the first time we combine the use of full-passage scaled-down Hyperbolic Secant (HS) excitation pulses [2] and gradient compensation in the readout direction [3] to recover BOLD signal in regions with signal dropout caused by Gx,s and Gz,s. We demonstrate improvements in temporal signal-to-noise ratio (TSNR) and BOLD sensitivity in the OFC and TL of six healthy male volunteers compared to conventional GE-EPI.

Methods: The parameters of a HS excitation pulse with amplitude $A(t)=A_0 \text{sech}(\beta t)$ and phase $\phi(t)=\mu \ln[\text{sech}(\beta t)]$ were optimized by Bloch simulation* in MATLAB to give the most uniform signal response for $G_{x,s} \pm 300 \mu T m^{-1}$ (pulse duration $T=5$ms, $\beta=3040$Hz and $\mu=4.25$). Susceptibility gradients in the read-out direction shift the position of the echo in k-space; dropout occurs when the shift is greater than $0.5/\Delta x$ i.e. echo occurs outside the acquisition window (Δx is the voxel size in the readout direction). Signal is also reduced at smaller echo shifts due to k-space filtering during image reconstruction. By combining, by sum-of-squares (SSQ), two volumes acquired with negative and positive compensatory gradients, that shift the echo by $\pm 0.3/\Delta x$, signal can be recovered. The TSNR of conventional GE-EPI sequence (with an SLR excitation pulse) and the 2-step x-gradient compensation combined with optimized HS pulse was measured using data from two 450 volume EPI scans (conventional GE-EPI and the 2-step method). It was calculated voxel-wise as the ratio of the temporal mean to the temporal standard deviation, motion correction and high pass filtering (cut-off 0.01Hz) to remove signal drifts. BOLD sensitivity was assessed using a breath-hold experiment [4,5], in which subjects were visually cued to perform 48s blocks of paced breathing interleaved with 16s blocks of breath-holding. The differences between the two acquisition methods was assessed using the difference in raw z-statistic maps; produced by fitting a block design (with 16s blocks of breath-holding). The differences between the two methods were assessed using a breath-hold experiment. Due to the reduction in temporal resolution (because of the requirement to perform 2-steps) this technique is most appropriate for block designs (confirmed using a simple motor task – data not shown); event related experiments are unlikely to be possible and the effect of SSQ on resting-state analysis is still to be determined. This technique could be extended by the addition of gradient compensation in the phase-encoding direction to further reduce signal dropout, however this would result in a further reduction in temporal resolution.

* Bloch simulation code written by Dr B. Hargreaves (www-mrsrl.stanford.edu/~brian/blochsim)