Empirical Bayesian Estimation Improves Analysis of Resting-State Functional Connectivity from Multi-Echo BOLD Data

Feng Xu1,2, Suresh E. Joel1,2, Jun Hua1,2, Craig K. Jones1,2, Brian S. Caffo1, Martin A. Lindquist1, Ciprian M. Crainiceanu2, Peter C. van Zijl1,2, and James J. Pekar1,2
1Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States, 2F. M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, Maryland, United States, 3Biostatistics, Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States

Target Audience: Investigators using (or considering using) multi-echo acquisitions for functional MRI or other applications.

Purpose: Multi-echo fMRI acquisitions can improve sensitivity (by acquiring more data per unit time) and specificity (by facilitating rejection of nuisance variance) in functional MRI [1-3], compared with conventional EPI. Analysis of the multi-echo decays, yielding estimates of transverse relaxation rates in each brain voxel, is a case of parallel estimation of many parameters at once; statistical theory states that popular maximum likelihood methods (least-squares under Gaussian errors) are inferior to “shrinkage” approaches, such as the James-Stein estimator [4,5]. The purpose of this study was to assess application of the James-Stein shrinkage approach to estimation of transverse relaxation rates from multi-echo data.

Methods: Acquisition: Four healthy adults gave informed consent to participate in IRB-approved research. Resting-state data were acquired at 7 T using multi-echo BOLD: Following each RF excitation, echo-planar images were acquired at echo times of 10, 30, 50, and 70 ms, using a SENSE acceleration factor of 4.0. The TR was 2.6 s, and 140 volumes were acquired in each of two runs; acquired/reconstructed voxel size was 2.5x2.5 mm² / 1.5x1.5 mm² with a slice thickness of 3 mm plus a 0.5 mm gap. Twenty-nine slices were acquired, from the superior aspect of the cerebrum, covering the primary motor network (M1N) and most regions of the default mode network (DMN). A high resolution MP-RAGE image was acquired at isotropic 1 mm resolution. Initial analysis: Standard transverse relaxation rate, \(R_2 \), was computed for each voxel of each volume using least-squares fitting to the echo time decay. A goodness-of-fit threshold was used; only voxels within a 95% confidence interval of +/- 20 s⁻¹ were retained. The \(R_2 \) time series were temporally filtered using a band-pass filter of 0.01 – 0.1 Hz. For each subject, segmentation of the anatomical image was used to classify voxels by tissue type (grey matter, white matter, and cerebrospinal fluid). Shrinkage: The James-Stein estimator was applied to each echo planar image (EPI) to reduce physiological noise, was applied. The effective voxel size was 2.5x2.5 mm² / 1.5x1.5 mm² with a slice thickness of 3 mm plus a 0.5 mm gap. Twenty-nine slices were acquired, from the superior aspect of the cerebrum, covering the primary motor network (M1N) and most regions of the default mode network (DMN). A high resolution MP-RAGE image was acquired at isotropic 1 mm resolution. Initial analysis: Standard transverse relaxation rate, \(R_2 \), was computed for each voxel of each volume using least-squares fitting to the echo time decay. A goodness-of-fit threshold was used; only voxels within a 95% confidence interval of +/- 20 s⁻¹ were retained. The \(R_2 \) time series were temporally filtered using a band-pass filter of 0.01 – 0.1 Hz. For each subject, segmentation of the anatomical image was used to classify voxels by tissue type (grey matter, white matter, and cerebrospinal fluid). Shrinkage: The James-Stein estimator was applied to each EPI voxel to reduce physiological noise, was applied. The effective voxel size was 2.5x2.5 mm² / 1.5x1.5 mm² with a slice thickness of 3 mm plus a 0.5 mm gap. Twenty-nine slices were acquired, from the superior aspect of the cerebrum, covering the primary motor network (M1N) and most regions of the default mode network (DMN). A high resolution MP-RAGE image was acquired at isotropic 1 mm resolution. Initial analysis: Standard transverse relaxation rate, \(R_2 \), was computed for each voxel of each volume using least-squares fitting to the echo time decay. A goodness-of-fit threshold was used; only voxels within a 95% confidence interval of +/- 20 s⁻¹ were retained. The \(R_2 \) time series were temporally filtered using a band-pass filter of 0.01 – 0.1 Hz. For each subject, segmentation of the anatomical image was used to classify voxels by tissue type (grey matter, white matter, and cerebrospinal fluid). Shrinkage: The James-Stein estimator was applied to each EPI voxel to reduce physiological noise, was applied. The effective voxel size was 2.5x2.5 mm² / 1.5x1.5 mm² with a slice thickness of 3 mm plus a 0.5 mm gap. Twenty-nine slices were acquired, from the superior aspect of the cerebrum, covering the primary motor network (M1N) and most regions of the default mode network (DMN). A high resolution MP-RAGE image was acquired at isotropic 1 mm resolution. Initial

Results: The James-Stein estimator increased the spatial extent (number of significant voxels) of the DMN and M1N by about 2% and 4%, respectively. Table 1 compares the extent of seed-based functional networks derived from original vs. improved \(R_2 \) estimates. Shrinkage also improved the consistency of spatial maps across subjects; the first two columns of Table 2 summarize increased spatial concordance in high Z score voxels following application of the James-Stein estimator. The shrinkage decreased Z scores in DMN by 0.7% (p=0.01 paired T test); the corresponding decrease was not significant in M1N.

Discussion: Parallel estimation is typically accomplished using maximum-likelihood approaches, even though the empirical Bayes / shrinkage approach is theoretically superior [4,5]. In this study, application of the James-Stein estimator yielded modest improvements in the sensitivity of seed-based correlation outcome measures.

Conclusion: The James-Stein estimator improves outcome measures derived from multi-echo BOLD data acquired in the resting state.