High-resolution diffusion kurtosis imaging (DKI) enabled by segmented position orientation adaptive smoothing (POAS)

Siawoosh Mohammadi1, Karsten Tabelow2, Thorsten Feiweier3, Joerg Polzehl3, and Nikolaus Weiskopf1

1Wellcome Trust Centre for Neuroimaging at UCL, ION UCL, UCL, London, London, United Kingdom, 2Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Berlin, Germany, 3Healthcare Sector, Siemens AG, Erlangen, Bayern, Germany

Target Audience: researchers and clinicians interested in Kurtosis imaging.

Purpose: Recent studies suggest that Diffusion Kurtosis Imaging (DKI) is more sensitive to brain macrostructure than the well-known diffusion tensor imaging (DTI) [1, 2]; in particular, in gray matter where the diffusion profile is more complicated [3]. However, one drawback of DKI is that its estimation scheme is more poorly conditioned than DTI, because a 2nd and a 4th order tensor have to be estimated simultaneously [4]. Therefore, diffusion MRI data with different and higher b-values are required, which will result in a further reduced signal-to-noise ratio (SNR). As a consequence, high-resolution DKI with small voxel sizes has not been available in-vivo on clinical scanners. Here, we aimed to alleviate the low SNR issue of high-resolution DKI by using a novel version of the position orientation adaptive smoothing (POAS) [5], which is separately applied on grey and white matter segments.

Methods: One healthy volunteer (male) was scanned on a MAGNETOM Trio, a Tim System 3T scanner (Siemens AG, Healthcare Sector, Erlangen, Germany). Diffusion weighted images were acquired using a reduced field-of-view (FoV) technique [6]: 161x58 mm FoV, 34 slices, 1.2mm isotropic resolution, and 1.3mm slice thickness. The FoV was positioned around the motor cortex (see Fig. 1a). The images were acquired at 3 different b-values: 21 at b=20 s/mm², 100 at b=800 s/mm², and 100 at b=2000 s/mm² using the directions suggested by [7]. The total scan time was ~25min. Before estimating the diffusion and kurtosis tensor, we corrected the data for eddy currents and motion artefacts [8] and performed different smoothing approaches: (a) none, (b) segmented POAS (max. full-width-at-half-maximum FWHM = 4mm), (c) Gaussian smoothing (FWHM = 2.4mm). Pre-processing was performed using the ACID SPM toolbox (http://www.flnion.ucl.ac.uk/spm/ext/) and POAS using the R-package dti (http://cran.r-project.org/package=dti). To estimate the diffusion and kurtosis tensor from the pre-processed images, we used the heuristic approach detailed in [4]. To assess the data quality for each smoothing method, we chose a well-known diffusion index map, the fractional anisotropy, for the diffusion (FA) and the kurtosis (FAk) tensor as suggested in [1]. Furthermore, we calculated the histogram of the FAk values within the brain.

Results and Discussion: Both smoothing methods evidently improved the data quality of FA and FAk maps (e.g. fewer ripples and noise, Fig. 1c). However, the conventional Gaussian smoothing method reduced the anisotropy in the gray matter drastically and thus obscured cortical structure, whereas POAS maintained the anisotropy information (Fig. 1c, arrows). POAS and Gaussian smoothing eliminated the number of artificially high FAk (>1), which are an indicator of poor data quality, almost entirely (Fig. 2). However, Gaussian smoothing biased the FAk values towards small values, since it mixess diffusion profiles from adjacent voxels (i.e. makes them equal), resulting in less anisotropic diffusion profiles [9]. POAS maintained the more realistic anisotropic diffusion profiles significantly better.

Conclusion: High-resolution DKI becomes possible on a clinical scanner if segmented POAS is used to enhance the SNR in the data.

![Fig. 1](image1.png) ![Fig. 2](image2.png)

Fig. 1: The effect of smoothing on FA and FAk maps. The anatomy is depicted in the (a) magnetization transfer (MT) [10], (b) the colour-coded FA map using POAS (red: l->r, green: a->p, blue: h->f). (c) FA and FAk maps based on the original (top), segmented POAS (middle), Gaussian smoothed data (bottom). The original data were noisy with ripple artefacts, which were reduced by smoothing. The arrows highlight regions in the gray matter, where the anisotropy information is lost after Gaussian smoothing. Colour coded FA was generated using the DTI and Fibertools Software Package.

Fig. 2: Histogram of FAk for original (a), segmented POAS (b), and Gaussian smoothed (c) data. In the original data artificial FA values occurred frequently (FAk>1 in Fig. 2a), which were almost eliminated with smoothing. Unlike POAS Gaussian smoothing biased the distribution of the FA values towards small FAk.