Effects of Propofol on Cerebral Perfusion of White Matter versus Gray Matter in Pediatric Brain.

Reem S. Awwad1, Wilburn E. Reddick1, Bryan Winter1, Yimei Li2, John O. Glass3, Roland N. Kaddoum4, Zoltan Patay1,5, Amar Gajjar3, and Julie H. Harreld1

1Radiological Sciences, St. Jude Children’s Research Hospital, Memphis, TN, United States; 2Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States; 3Neurology, St. Jude Children’s Research Hospital, Memphis, TN, United States; 4Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States

Purpose: Significant alterations in cortical cerebral blood flow (CBF) and cerebral blood volume (CBV) in children sedated for dynamic susceptibility contrast (DSC) perfusion MRI with IV propofol have been described (Harreld et al, RSNA 2011), in keeping with known effects of propofol on vessels and cerebral metabolic rate (CMR) and potentially impacting interpretation of MR perfusion data. Given that cortical CMR is three-fold greater than white matter (WM) CMR and that CMR and CBF are tightly coupled in the usual state, effects of sedation on gray matter (GM) and WM perfusion may differ. Because DSC perfusion is not considered absolutely quantitative, ratios of tumor to normal-appearing WM are often used to quantify CBV or CBF. If WM perfusion is altered with anesthesia, these ratios may not be reliable. Age-related decreases in GM/WM ratio have also been described, further complicating analysis. We retrospectively reviewed DSC MR perfusion imaging in a pediatric neuro-oncology population to investigate whether WM CBF and/or CBV significantly differ between children sedated with propofol (IV) and those not sedated (NS) at MRI and, if so, whether GM/WM ratio would provide a more robust basis for comparison.

Materials & Methods: A retrospective review of DSC MR perfusion images acquired supratentorially (Magnetive IV contrast, 0.8-1 cc/sec) in 38 pediatric patients without visible supratentorial brain abnormalities (age range 1.8 to 18 years, mean age 9.7 years) sedated with IV propofol (IV, n=19, mean age 5.3 years; 13/19 had RT) or non-sedated (NS, n=19, mean age 14.2 years; all had RT) underwent segmentation (IV, n=19, mean age 5.3 years; 13/19 had RT) or non-sedated (NS, n=19, mean age 14.2 years; all had RT) underwent segmentation of GM and WM. Anterior cerebral artery (ACA), middle cerebral artery (MCA) and posterior cerebral artery (PCA) territorial GM, WM and GM/WM CBV and CBF were statistically compared using Wilcoxon Signed Rank for within group comparison and Wilcoxon Rank Sum test for between group comparison. Multiple linear regression analysis with CBF and CBV as dependent variables and independent variables age, Hct, weight, gender, and RT were performed to identify influential factors in GM, WM and CBVGM/WM in each group by vascular territory.

Results: CBFGM and CBVGM were ~2x greater than CBFWM and CBVWM in all territories in both groups (p < 0.0001). Though ACA and MCA CBFGM were greater in NS than IV (p=0.026, 0.049); only MCA CBFWM was greater in NS than IV (p=0.041). MCA CBVGM was greater in IV than NS (p=0.034) while IV CBVWM was greater than NS only in the ACA territory (p=0.0479). Although greater ACA CBVGM/WM in NS approached significance (p=0.0505), only PCA CBVGM/WM was greater in NS than IV (p=0.0167). There was no significant difference in CBVGM/WM between groups and across vascular territories.

In the NS group, ACA CBVGM decreased slightly with weight (β=-0.0700, p=0.0159); once weight was accounted for, there was no additional influence by age or Hct in any vascular territory. There was no significant influence on CBFWM or CBVWM by age, weight, or Hct. ACA CBVGM/WM decreased slightly with age (βACA=-0.098, p=0.0356) and increased slightly with Hct (βHct=0.0626, p=0.0382) with no additional influence by weight or gender in any vascular territory.

In the IV group, CBVGM increased with weight in ACA, MCA and PCA territories (p=0.0004, p<0.0001, p=0.031) CBFWM increased with weight in ACA and MCA territories (p=0.007, 0.033); once weight was considered, there was no additional influence by age, gender, Hct, or RT. Only ACA CBFWM increased with weight (p=0.0139); MCA CBFWM was greater with RT (p=0.0342). There was no additional influence by age, gender or Hct. Only MCA CBVGM/WM increased very slightly with age (β=0.0529, p=0.0200) with no additional influence by weight, Hct, gender or RT. Only ACA CBFWM was smaller with RT (β=-0.5227, p=0.0009) with no additional significant influence by age, Hct, weight, or gender.

Conclusions: Differences in CBFWM & CBVWM between NS and IV are not the same as those in GM. Lack of significant difference in CBVGM/WM between groups suggests GM/WM ratio may be useful for normalization of tumor CBV measurements. However, age-related increases in CBFWM and CBVGM/WM in some vascular territories, contrary to expected decreases in CBFWM with age, may influence ratio-based perfusion measures. Territorial alterations in CBFWM and CBVWM with propofol differed from those in GM. Weight-related trends in GM CBF and CBV do not appear to hold for WM, so may not be a valid normalization factor in WM. Although GM/WM ratio appears more robust than GM or WM measures alone, it should be used with caution pending prospective study, as alterations in age-related trends in CBVGM/WM may exist.

References: