DTI abnormalities following blast-related TBI across 4 Independent Cohorts: Regional specificity for the middle cerebellar peduncle

Christine MacDonald1, Ann Johnson1, Octavian Adam2, Dennis River1, James Sorrell1, Brian Sammons1, Dana Cooper1, Linda Wierzechowski3, Yolanda Barnes1, John Ritter4, Todd May2, Maria Barefield2, Josh Duckworth1, Don Labarge2, Dean Asher2, Benjamin Drinkwine3, Joshua Shimony4, Matthew Parsons2, Abraham Snyder5, Michael Russell4, John Witherow1, Raymond Fang1, Stephen Flaherty1, and David Brody1

1Neurology, Washington University, Saint Louis, MO, United States, 2NATO Role 3 Kandahar Air Field, Kandahar, Afghanistan, 3Landstuhl Regional Medical Center, Landstuhl, Germany, 4Bastion Hospital, Helmond Province, Afghanistan, 5Camp Leatherneck, Helmond Province, Afghanistan, 6Radiology, Washington University, Saint Louis, MO, United States, 7Radiology, Washington University, Saint Louis, Missouri, United States, 8US Army, San Antonio, TX, United States

Introduction: Blast-related traumatic brain injury (TBI) has been called the ‘signature injury’ of the wars in Iraq and Afghanistan. Simulation studies have suggested that there may be a specific vulnerability of the brain to blast exposure unrelated to other mechanisms of TBI (1). This vulnerability has been investigated in only a single case report (2), but not in larger cohorts of patients. In the current study, 4 independent cohorts of individuals exposed to blast were studied. These cohorts consisted of blast-exposed patients who were either scanned acutely in Afghanistan (AFG), medically evacuated and scanned at Landstuhl Regional Medical Center (LRMC) in Landstuhl Germany, scanned chronically at Washington University in St. Louis (WU 1), and a rare, small cohort of patients who only experienced a single, primary blast exposure and had no previous history of TBI or other neurological disorders also scanned at Washington University (WU2). These cohorts provided a unique opportunity to compare and contrast imaging findings across patients following blast exposure at varying time points post injury; potentially documenting the temporal evolution of this injury.

Methods: Patients were recruited and scanned in three different forums. For each cohort a group of controls without a history of blast-related TBI were enrolled and scanned for comparison. Controls were also US military personnel deployed to Iraq or Afghanistan during the same time frame as the patients. All scanners were 1.5T and either Siemens’ Avanto (LRMC, WU) or Phillip’s Achieva (AFG). All subjects were 18-49 y/o, both male and female, and from all branches of the military, with no prior history of a neurological disorder. The time since injury varied for TBI subjects by cohort: 0-7 days (AFG) 0-30 days (LRMC), 6-12 months (WU1), and 2-4 years (WU2). Group size also varied across cohort: AFG 108 TBI: 98 CTL, LRMC 40 TBI: CTL 21, WU1 47 TBI: 18 CTL, and WU2 4 primary-blast TBI: 18 CTL. The same control group was used to compare both independent groups of blast TBI patients at WU. AFG subjects scanned in theatre were enrolled under a study conducted by Dr. Adam and colleagues at Kandahar air field and Camp Leatherneck. LRMC subjects were scanned in Germany and enrolled under a study conducted by Dr. Brody and colleagues at Landstuhl. WU subjects were scanned in St. Louis and enrolled under a study conducted also by Dr. Brody and colleagues (WU1) in collaboration with Dr. Russell (WU2). All scanning protocols consisted of a T1 and T2-weighted 1x1x1 mm isotropic image for atlas registration as well as 2 DTI acquisitions b-1000, 2.5 x 2.5 x 2.5 mm isotropic voxels with 15 directions (AFG), or 25 directions (LRMC, WU). Post-processing was performed to align each set of scans into standardized Talairach coordinate system using cross modal affine transformations(3). DTIstudio software was then utilized to perform a whole brain white-matter analysis (4, 5). FA values were compared between control and TBI cohorts for each site. No attempt was made to combined data sets across sites as cross-scanner comparisons could not be validated. In the WU1 cohort, hand-drawn regions of interest were utilized (6) to test whether the specific analysis approach could possibly bias the results.

Results and Discussion: Although each cohort identified regions of reduced anisotropy indicative of white matter injury, only the left middle cerebellar peduncle was found to be abnormal across all 4 cohorts. AFG (p=0.0098), LRMC (p=0.0012), WU1 (p=0.0013), WU2 (p=0.0017). I-sided Mann Whitney U, uncorrected p-values. Conventional images acquired at the same time did not reveal abnormalities in this region as reported by a board-certified radiologist. The identification of such a region lends support to the notion that there may be specific regions of vulnerability following a blast. However, it remains to be determined if this is truly from the blast or from additional insults endured during the exposure as 3 of the 4 cohorts experienced ‘blast plus’ events at the time of their head injuries. It is possible that the middle cerebellar peduncle is universally vulnerable to injury. Direct comparison to identically assessed US military personnel with non-blast related TBIs is ongoing.

References: