SENSE Induced Correlations are used to Optimize RF Coil Design for Specific fcMRI Studies

Iain P Bruce1,1, L. Tagan Muftuler2,3, and Daniel B Rowe1,2

1Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States, 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States, 3Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States

Target Audience: MR Hardware Engineers

Background and Purpose: With the advent of parallel MRI techniques such as SENSitivity Encoding (SENSE), much attention has been placed on the optimization of RF coil design in an effort to improve reconstructed images through advancements in hardware. The overlapping of coil magnetic fields (B-fields) results in an amplification of noise in the reconstructed images, and is almost exclusively measured using the geometry factor (g-factor), which is directly proportional to the SNR in the SENSE reconstructed images. In recent studies, inverse methods of achieving optimal RF coil design have been developed, where a cost function, defined by the g-factor in a region of interest (ROI), is minimized. However, it has also recently been shown that the un-aliasing process in the SENSE model induces an artificial correlation between the previously aliased voxels. This correlation is of no biological origin and can have detrimental fcMRI implications. The cost function would thus be more appropriately defined to minimize both the g-factor within a ROI as well as the correlations induced between the ROI and regions with which it was previously aliased. The goal of this study is to observe the change in the correlations induced by the SENSE model into a ROI with variation in coil geometry.

Methods: A 60x60x60 voxel FOV was simulated with an oval phantom. The ROI in Fig. 1a was positioned to encompass areas both with and without aliasing after a SENSE reconstruction using a reduction factor of R=2. Changes in a butterfly shaped coil geometry in Fig. 1b were performed by varying the inner and outer lengths, li and lout, from 27 to 45 cm. The center angle, ϕi, of each coil i=[1:4] in Fig. 1c were rotated by 180°, starting with coil 1 centered at π/4. The coil radius was r=18 cm, the angle between the outer edges was δ/π/8, the angle between the inner edges was θ=π/8 and the gap between coils was held constant at Δ=π/8. In this study, the Biot-Savart law was used to estimate the B-fields over the entire volume. For subsequent studies, full-wave simulations will be carried out using the HFSS software package for more realistic B-field estimates. The coil covariance, Ψ, was estimated using an inner product of the coil B-fields within the phantom. With a matrix of Nc=14 coil sensitivities in the R=2 aliased folds, S, the covariance induced solely by the un-aliasing of a single aliased voxel with the SENSE model is covSENSE=UH, where U=(SΨ−1S)−1Ψ−1. The induced correlation is derived by corrSENSE=D(covSENSE)D−1, where D is a diagonal matrix with entries from diag(covSENSE). As both S and Ψ are complex-valued, the correlation induced between the real parts (equivalently between the imaginary parts) of the un-aliased voxels is denoted corrRR, while the correlation induced between the real/imaginary parts of the un-aliased voxels is denoted corrRI.

Results & Discussion: The coil layout that jointly minimizes corrRR and corrRI from aliased voxels induced into the ROI is presented in Fig. 1d, where lout=45 cm, lin=39.6 cm. As shown in Fig. 1e, when rotating the array by 180°, the correlations are minimized when the centers of the coils were aligned with multiples of π/2. However, although not presented here, the centers of the coils did not align themselves with π/2 when corrRR and corrRI were optimized individually, and thus the assumption that coil geometries are minimized for every ROI when symmetric cannot be made. The ROI’s position relative to each coil plays a key role in determining the optimal layout for minimizing both the g-factor and the induced correlation. It is for this reason that the off center ROI in Fig. 1a was selected.

Conclusion: While the g-factor is a useful metric in determining the amplification of noise within a ROI in the SENSE reconstructed images as a result of the overlapping B-fields, it does not provide a measure of correlations induced into the ROI by the SENSE model. As the SENSE model uses sensitivities that are dependent on the coil geometry, the correlations induced into a ROI have been shown to vary with changes in the RF coil geometry. Specific coils can be designed for fcMRI studies by developing a cost function that uses a least squares estimation to minimize both the g-factor and the SENSE induced correlations with changes in parameters: Nc, R, lin, lout, ϕi, δi, θi, and Δi (the gaps between coils i-j). For a specific ROI, a design of this kind would both maximize the SNR in areas of aliasing and minimize the potential for Type I&II errors in fcMRI studies resulting from changes to the covariance of the data. The proof of concept has been demonstrated here with an Nc=4 element coil array. However, the technique can be applied to coil arrays with more elements, in which each element is independently optimized to maximize the imaging performance in any selected ROI.