Comparison of Hepatic Fat Measurements using Dual-Echo mDIXON Imaging and 1H MRS with Fat Phantom Validation
Paul Begovatz1, Peter Nowotny1, Tomas Jelenik1, Bettina Nowotny1, Birgit Klüppelholz2, Guido Giani3, Juergen Bunke1, Michael Roden1,4, and J-H. Hwang3
1Institute of Clinical Diabetology, German Diabetes Center, Duesseldorf, Germany, 2Institute for Biometry and Epidemiology, German Diabetes Center, Duesseldorf, Germany, 3Philips Healthcare, Hamburg, Germany, 4Department of Metabolic Diseases, University Clinics, Heinrich Heine University, Duesseldorf, Germany

Introduction:
In vivo fat assessment by MR techniques of the liver has been widely applied in medicine for non-alcoholic fatty liver disease, and type 2 diabetes. To date 1H MR-Spectroscopy (MRS) is considered as the gold standard for liver fat measurements due to its accuracy. However, in- and out-of-phase DIXON [1] imaging techniques are increasingly being used for liver fat quantification. Recently a flexible Dual-Echo DIXON technique (mDIXON) has been introduced [2], which can provide a higher signal-to-noise by employing very short echo times. The goal of this study was to compare the accuracy of 1H MRS to a Dual-Echo mDIXON sequence on a set of fat phantoms, and to determine the feasibility of Dual-Echo mDIXON imaging to accurately quantify hepatic fat content in vivo.

Materials and methods:
All measurements were conducted on a whole body 3.0 T Achieva MRI (Philips Healthcare, The Netherlands), using a 16 channel XL torso phased-array receiver coil. 16 healthy subjects (age: 54±11 yr, BMI: 26.2±2.9 kg/m2) consented to a research protocol which was approved by the local review board of human studies.

Phantom construction:
Homogeneous emulsions of canola oil, distilled water, agar (2% by weight), and 20 mM sodium dodecyl sulfate [3] were prepared in 100 ml bottles with fat fractions of 2.5, 5, 10, 20, 30, 40, 50, 60, and 80%. The agar and SDS were heated over a hot plate before being mixed with oil using a household homogenizer and allowed to cool.

1H MRS:
MRS was conducted with both non-water-suppressed, and VAPOR (WS) STEAM sequences (Single voxel 30x30x20 mm3, NSA: 32, TR/TE: 4000/10ms, samples: 2048, BW: 2000 Hz), with respiratory triggering for in vivo measurements. MRS data was analyzed via NUTS (Acorn NMR Inc, USA). Fat fraction was expressed as (WS Fat)/(Water+WS Fat) in all cases, with fat expressed as the summation of the water-suppressed fat peaks at 1.3 and 0.9 ppm. In vivo measurements were also corrected for T2 and percent of total hepatic fat content [4].

mDIXON:
Abdominal (F/IP/OP/W) images were acquired in a 19 sec breathhold (BH) via a 3D T1 fast field gradient echo (FFE) pulse sequence (Flip Angle: 5°, TR/TE$_1$/TE$_2$: 5.0/1.2/2.5 ms, FOV: 375x295x200 mm3, resolution: 2x2x2 mm). mDIXON fat fraction was also expressed as fat/(water+fat), and obtained pixel by pixel using the PRIDE software package (Philips Healthcare, The Netherlands). Fat fraction was calculated from the average of four (800 mm3) ROIs placed in different slices within the liver.

Results:
The fat phantom emulsions remained stable after cooling and revealed no air bubbles during imaging (Figure 1B). (Figure 1) VAPOR MRS revealed a strong correlation (slope = 0.94, r = 0.95, P < .0001) and a high sensitivity for fat fractions below 10% (intercept = 0.99%). mDIXON imaging also showed a good correlation (slope = 1.00, r = 0.99, P < .0001); however, with an over estimation of fat fractions (intercept = 4.5%). In Vivo results of hepatic fat quantification by mDIXON and 1H MRS correlated well with each other (slope = 1.07, r = 0.96, p < 0.0001, intercept = 1.6%) (Figure 2), and in vivo fat fraction maps reconstructed in PRIDE provided an accurate separation of fat and water signals both within the body and adipose tissue (Figure 2B).

Discussion:
The Dual-Echo mDixon sequence provided a high SNR and accurate fat-water separation over the whole abdomen at a high image resolution within a single BH. The high sensitivity and correlation of Dual-Echo mDixon imaging to 1H MRS also shows that mDixon can be used as a clinical tool for fast detection of changes in liver fat due to intervention in patients with diabetes or fatty liver disease. However, the zero offset and residual noise shows that 1H MRS is still superior for exact liver quantification, and that more work must be done to use mDIXON for accurate disease diagnosis and fat fractions below 2%.

References