Balanced SSFP-like imaging with simultaneous Water-Fat Separation and Band Reduction using Small-tip Fast Recovery

Feng Zhao1, Hao Sun2, Jon-Fredrik Nielsen3, Jeffrey A Fessler4, and Douglas C Noll1

1Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States, 2EECS, The University of Michigan, Ann Arbor, MI, United States

Introduction: Balanced SSFP provides high SNR efficiency and useful T1/T2 weighting, but suffers from bright fat signal and off-resonance banding. Recently, a bSSFP-based method was proposed for simultaneous suppressing fat and banding artifacts from two phase-cycled acquisitions [1]. That method requires large tip angle excitation which may be undesirable in some applications, e.g., DESPOT2 [2], and leads to increased SAR. We propose to use an alternative steady state imaging sequence, referred to as Small-Tip Fast Recovery imaging (STFR) [3], to do water-fat separation and suppress banding artifacts, which works well for flip angles ranging from 16° to 90°. Specifically, this method is based on the gradient crusher based STFR (G-STFR) [4] that is equivalent to the chimera SSFP [5]. The proposed method was demonstrated in phantom and in-vivo experiments on a 3T scanner.

Theory: Similar to [1], the proposed method works by linearly two phase-cycled acquisitions with B0 map acquired separately. The noiseless signals of the two acquisitions are modeled in the domain as in (1), where $S_i(x)$ and $S_{j}(x)$ are pixel values of the two acquisitions at location x, $W(x)$ and $F(x)$ are the transverse magnetizations of water and fat respectively, $P_i(x)$ and $P_j(x)$ are signal profiles of the th acquisition in terms of $f_{i}(x)$ and $f_{j}(x)$ which are the offset frequencies of water and fat respectively, e.g., $f_{i}(x) = f_{0}(x) = -440$ Hz at T_1. $P_i(x)$ and $P_j(x)$ are both normalized so that the tissue contrast is preserved in $W(x)$ and $F(x)$: $P_i(x)$ and $P_j(x)$ are centered around water and fat center frequencies respectively, and they are not exactly the same as each other due to large difference of T_1; however, it will be shown that $P_i(x)$ and $P_j(x)$ are relatively insensitive to T_1, T_2 values within their own reasonable ranges. Since $P_i(x)$ and $P_j(x)$ can be determined based on imaging parameters and our G-STFR signal model accurately [4], there is no approximation necessary for $P_i(x)$ and $P_j(x)$, unlike the sinusoidal assumption in [1]. Calculations of the linear combination weights $a_i^w(x)$ and $a_i^f(x)$, which are used for separation of water and fat respectively, are described in (2) and (3). The water or fat image is then calculated as in (4). Note that both the tip-down and the tip-up pulses are the same regular selective or hard excitation pulses. Empirically, we found that the profiles are insensitive to flip angles ranging from 16° to 90° which cover the optimal values for most applications.

For each experiment, a lookup table has to be built for $P_i(x)$ and $P_j(x)$ versus offset frequency f. We propose an iterative method to calculate $a_i^w(x)$ and $a_i^f(x)$ as in (5), which is an example for calculating $a_i^w(x)$, in (5), absolute values are taken to relax the irrelevant phase of water image, which is a magnitude least square problem [6]. By adjusting the free procession time T_{bss} that water and fat sit at the peak and the bottom in each magnitude profile, the problem can be manipulated to be very well-conditioned, so regularization is not necessary in (5) to control the magnitude of $a_i^w(x)$ and $a_i^f(x)$. Furthermore, since the signal profiles are calculated assuming infinite narrow spectra of each component in the voxel, which is not true in practice, we assume Lorentzian-shaped spectra for water and fat which will be convolved with $P_i(x)$ and $P_j(x)$ respectively to produce more realistic signal profiles.

Methods and Results: We first simulated the complex signal profiles, i.e., $P_i(x)$ and $P_j(x)$, of water and fat produced by G-STFR over ranges of tissue parameters, i.e., $40 \text{ ms} \leq T_{2,\text{fat}} \leq 100 \text{ ms}$, $150 \text{ ms} \leq T_{1,\text{fat}} \leq 250 \text{ ms}$, $60 \text{ ms} \leq T_{1,\text{water}} \leq 200 \text{ ms}$, and $0.6 \text{ s} \leq T_{2,\text{water}} \leq 2 \text{ s}$. The results in Fig. 1 demonstrate that the signal profiles are relatively insensitive to different tissue types, so the method can work based on certain uniform tissue parameters.

We tested the method in a spherical phantom filled with water (MnCl2) doped and mineral oil on a 3T GE scanner. The actual T_1, T_2 values are: $T_{1,\text{fat}} \approx 200 \text{ ms}$, $T_{2,\text{fat}} \approx 22 \text{ ms}$, $T_{1,\text{water}} \approx 1.5 \text{ s}$, $T_{2,\text{water}} \approx 80 \text{ ms}$. A linear gradient was turned on to generate some B0 inhomogeneity (90 – 130 Hz). 3D G-STFR was used to acquire $S_i(x)$ and $S_{j}(x)$; FOV 24×24×10 cm, spin-warp readout, 64×64×20 matrix size, $T_{bss} = 8 \text{ ms}$, $T_{b} = 3.1 \text{ ms}$, the free procession time $T_{bss} = 5.4 \text{ ms}$, flip angles were about 35°. To demonstrate the robustness of the method to model mismatch, we used inaccurate T_1, T_2 values to calculate $a_i^w(x)$ and $a_i^f(x)$, i.e., $T_{1,\text{fat}} = 150 \text{ ms}$, $T_{2,\text{fat}} = 70 \text{ ms}$, $T_{1,\text{water}} = 2 \text{ s}$, $T_{2,\text{water}} = 120 \text{ ms}$. In addition, a bSSFP image with $T_{bss} = 5.38 \text{ ms}$ was acquired for the same object. Fig. 2 shows results from one of the axial slices: The proposed method makes relatively uniform water (on the bottom) and fat (on the top and some attached to the bottom) images without banding artifacts compared to the bSSFP image.

Furthermore, the method was tested with the same 3D G-STFR sequence in a human head on the 3T GE scanner. We acquired 3D images of a 4 cm thick axial slab around eyes; FOV = 24×24×10cm, spin-warp readout, 256×256×20 matrix size, $T_{bss} = 10.6 \text{ ms}$, $T_{b} = 4.0 \text{ ms}$, the

Conclusions: The proposed method for steady-state water fat separation and banding artifacts suppression is demonstrated at 3T scanners. This steady-state method which works for a wide range of flip angles and T_1, T_2 values can potentially be an alternative to the bSSFP-based method which commonly requires high flip angle and thus high SAR.