THE COMPARISON STUDY OF ASL AND DCE MRI FOR RENAL GLOMERULAR FILTERATION RATE (GFR) MAPPING

Jing Wang1, Yudong Zhang2, Jue Zhang1, Xiaoying Wang3 and Jing Fang1

1Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China, 2Department of Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China, Beijing, China, 3Department of Radiology, Peking University First Hospital, Beijing, China

Introduction

The quantitative measurements of renal oxygenation and hemodynamics are important in clinical trials. In this study, we utilized PASL technique with variable echo time acquisitions (VTE-ASL) to label blood as an endogenous tracer in rabbit kidney, combined with a hypothetic two-compartment model to estimate the renal blood flow (RBF), renal blood R2* and glomerular filtration (GFR) (1). The non-contrast results obtained by VTE-ASL were further compared with the kinetic parameters measured by DCE-MRI to explore the feasibility of noninvasive renal function evaluation.

Materials and Methods

Six New Zealand white rabbits (male, 2.5–3.0 kg) were included in this study: all the studies were performed on a GE 3T scanner. The ASL images were acquired with variable TEs: 20, 40, 60, 80, 100, and 120ms, with other imaging parameters as: TR 3000ms, flip angle 90°, 5mm slice thickness, inversion time (TI) :1500ms. The ΔM images were used to monitor the signal changes at different TEs for robust blood and urine components model fitting (Fig. 1). A 3D coronal SPGR protocol with flip angle 3° and 15° was performed for tissue T1 estimation, which will be used for RBF quantification (2). Blood R2* and the dimensionless extraction fraction E maps were obtained by fitting the signal time course to a two-compartment cortical model (2CC). The GFR map was estimated pixel-by-pixel based on the E and RBF maps.

Low dose DCE-MRR (0.05 mmol/kg Gd-DTPA) was performed following VTE-ASL scan to evaluate the glomerular filtration function, which involved a 4 minutes 3D SPGR (flip angle 15°, TR/TE 3.1/0.9 ms) scan with temporal resolution as 4s. The tracer-kinetic modeling of glomerular filtration is based on a two-compartment exchange model (3, 4), defined by three parameters: renal blood volume fraction (VP), tubular volume fraction (VE) and extraction-flow (EF), actually reflecting GFR. Following T1 correction, Pixel-wised VP, VE and EF maps were fitted with the Levenberg-Marquardt nonlinear least squares algorithm.

Results

The cortical RBF were estimated as 313.2±58.9 ml/100g/min, which is similar to previous studies (5). The typical GFRASL value, calculated based on extraction fraction E (0.18±0.10 in cortex) and renal plasma flow (RPF), was reported as 27.1±4.2 ml/100ml/min in cortex, which is also confirmed by previous study using invasive methods (1). The blood R2* estimated by ΔM signals was shown Fig.2c, which reflects the tissue oxygen level. The GFRDCE was reported as 31.6 ± 6.2 ml/100g/min. GFRASL and GFRDCE were highly in agreement with each other.

Discussion and Conclusion

Previous study indicates that the urine has a long T2 time (>400ms) (6), thus, GFR could be estimated noninvasively based on ASL method with variable TEs. Compared with DCE-MRR, the GFR values of the six rabbits obtained by VTE-ASL suggest that there is much comparability between noninvasive and established invasive methods. The preliminary results, indicate that the noninvasive VTE-ASL may be valuable for obtaining quantitative GFR, RBF and blood R2* maps simultaneously. Further studies in a larger population are undergoing to test the feasibility of the proposed method.

References


Figure 1. (a) Raw rabbit ASL and (b) ΔM images with varied TEs. From left to Right: TE = 20, 40, 60, 80, 100, 120ms. Renal perfusion signal contrast is well demarcated.

Figure 2. (a) The typical RBF map (ml/100g/min), (b) extraction fraction map, (c) blood R2* map (Hz) and (d) GFR map (ml/100ml/min) produced by the two compartment model based on VTE ASL.

Figure 3. The pixel-wised (a) VP, (b) VE and (c) EF maps estimated from a nonlinear least squares algorithm.