A two-stage general kinetic model for improved estimation of brain tumour perfusion using arterial spin labeling

Patrick W Hales1, Kim Phipps1, Ranmeek Kaur1, Tina Banks1, and Chris Clark1

1Imaging and Biophysics, University College London, London, London, London, United Kingdom, 2Neuro-oncology Department, Great Ormond Street Hospital, London, London, United Kingdom, 3Radiology Department, Great Ormond Street Hospital, London, London, United Kingdom

Purpose Arterial spin labeling (ASL) is an emerging technique for non-invasive quantification of cerebral blood flow (CBF). When dynamic data are acquired over a range of inflow times (TI's), a ‘single-stage’ general kinetic model such as 1 is often used for CBF quantification. However, these models assume labelled blood instantaneously exchanges with tissue on arrival. This results in an overestimation of CBF in voxels containing large arteries, the blood in which is destined to perfuse more distal tissue. Furthermore, this model often fails to describe the irregular perfusion kinetics in paediatric brain tumours (Fig 1). We introduce here a ‘two-stage’ general kinetic model, which describes the passage of blood in both non-exchanging arteries and the capillary bed, and is better suited to modelling the irregular flow dynamics found in brain tumours.

Methods Theory: Similar to 1, our model is derived from three basis functions: the delivery term, \(c(t) = \exp(-t/T_1) \) [1] (for \(T_1 < \text{BAT} + T \), \(\text{BAT} = \) bolus arrival time, \(T = \) bolus duration) the magnetization relaxation function, \(m(t) = \exp(-t/T_1) \) [2], and the tissue residue function, \(r(t) \). In our model we relaxed the assumption of single-compartment kinetics, allowing labelled water to remain in the larger arterial vessels up to time \(t = \text{BAT} \), after which it is free to exchange with surrounding tissue (\(t > \text{BAT} \)). The tissue residue function is therefore: \(r(t) = 1 \cdot \text{aBV} \) for \(t < \text{BAT} \), and \(r(t) = (1-\text{aBV}) \cdot \exp(-\text{CBF} \cdot t/\lambda) \) for \(t > \text{BAT} \), where \(\text{aBV} = \) local arterial blood volume fraction, \(\text{CBF} = \) cerebral blood flow (ml/100g/min), and \(\lambda = \) equilibrium tissue-blood partition coefficient of water (0.9). As described in 3, the dynamic ASL difference signal is then: \(\Delta M(t) = 2 \cdot \text{aBV} \cdot c(t) \cdot (r(t) \cdot \Delta M(t)) \) [4], where ‘\(x \)’ denotes convolution, and \(\Delta M = \) control-label signal intensity. Data Acquisition: Six paediatric brain tumour patients (2 gangliogliomas, 2 pilocytic astrocytomas, 1 meningioma, 1 pituitary adenoma, mean age 12.5 yrs) and 5 healthy subjects (mean age 28 yrs) were imaged at Great Ormond Street hospital using a 1.5T Siemens MR system. ASL was performed using a FAIR sequence with 3D GRASE readout and background suppression (details in 3), with 12 TI times (0.2 to 2.4 s) and 3.6x3.6x5.0 mm resolution. Voxel-wise \(DM \) values were fit to equation [4], with \(\text{BAT} \), \(\text{CBF} \), \(t_\text{a} \) and \(\text{aBV} \) as fitted parameters (\(T \) was fixed at 0.7 s). Data were also fit to the standard ‘single-stage’ Buxton model 1, and the Bayesian Information Criterion (BIC) was used for model comparison.

Results Mean CBF in the healthy subject’s grey matter was 42±4 ml/100g/min (mean±SD) using the two-stage model, compared to 75±9 ml/100g/min derived from the standard Buxton model 1. Across the tumour cohort, mean CBF within the tumour was 16±6 ml/100g/min, and mean aBV was 0.42±0.11. The mean BIC value within tumour voxels was -2.65 using our arterial model, compared to -2.61 using the standard model.

Discussion & Conclusion Healthy grey matter CBF values derived from our two-stage model showed improved agreement with previously reported values derived from PET 3, suggesting CBF quantification may be more accurate using our model, due to reduced large vessel artefacts. Furthermore, the lower voxel-wise BIC values within tumour regions suggest dynamic ASL data is better described by our two-stage ASL model in this pathology. This is because our model is able to capture the ‘dual peaks’ seen in the \(\Delta M \) time series observed in some tumour voxels (Fig 1), which may be due to tortuous vasculature in the tumour region. The novel contrast seen in aBV maps (Fig 2) suggests new information regarding the vasculature surrounding brain tumours may be obtained from our two-stage ASL model, which may be important in the classification and assessment of treatment response in brain tumours.

Acknowledgements We thank the patients and healthy controls who consented to this study. This work was funded by Cancer Research UK.