Histological correlation of DKI-White Matter Modeling Metrics in the Cuprizone-Induced Corpus Callosum Demyelination


1Radiology and Radiological Science, Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States, 2Neurosciences, Medical University of South Carolina, Charleston, SC, United States

TARGET AUDIENCE: For those interested in diffusion MRI, white matter diseases and animal models of disease.

PURPOSE: In the cuprizone mouse model, reproducible corpus callosum (CC) demyelination occurs within weeks after mice are fed the copper chelator cuprizone (bis-cyclohexanone oxalidihydrazone), with oligodendrocyte damage followed by demyelination associated with glial response. Recently, a white matter (WM) model has been proposed for relating diffusional kurtosis imaging (DKI) data to specific WM biophysical tissue metrics. Here, we investigate these WM metrics in the CC of the cuprizone mouse model and compare them to values for control mice and to histological markers of myelin integrity.

METHODS: A total of 20 (8-10 weeks old) C57BL/6 mice (n=10 cuprizone-treated: CR, n=10 normal controls: NC) were fed specific diets for 10 weeks. CR mice were fed a diet containing cuprizone (0.2%), (Biscyclohexanone oxalidihydrazone, Sigma-Aldrich) and NC mice were maintained on a standard diet. All in vivo MRI experiments were performed on a 7T Agilent MR system. A respiration-gated 4-shot SE-EPI sequence was used for DKI acquisition with the following parameters: TR/TE=3000/30ms, 8/Δ=5/17ms, slice thickness=1mm, matrix=128×128, in plane resolution=234×234 μm², 4 averages, and 30 gradient directions with five b-values for each direction (0.5, 1, 1.5, 2 and 2.5 ms/μm²). All metrics were derived from the DKI dataset using Diffusional Kurtosis Estimator (DKE). These include 1) the standard DTI-based metrics of fractional anisotropy (FA) and (MD), axial (D_a) and radial (D_r) diffusivity, 2) the kurtosis metrics of mean (MK), axial (K_a) and radial (K_r) kurtosis, and 3) the WM model metrics of axial and radial extra-axonal diffusivities (D_a, and D_r), the intrinsic diffusivity inside the axons (D_i), the axonal water fraction (AWF), and the tortuosity (λ) of the extra-axonal space.

To reduce partial volume effects, all parametric maps were masked to eliminate voxels with MD values greater than 1.5 μm²/ms. After MRI, quantitative analysis of myelin density was performed; all brains were processed and stained with Solochrome (for myelin) at the NeuroScience and Radiological Science Departments (Knoxville, TN). Digital pictures of the CC histology slides were obtained and quantitatively assessed based on the mean intensity values from all pixels in three CC regions of interest (ROIs). The ROIs were manually drawn at the level of CC (rostral (aCC), middle (bCC), and caudal (pCC)), for both MRI and histology, using ImageJ (http://rsb.info.nih.gov/ij/). For this analysis, we assumed the mean intensity value to be related to the degree of the histological staining. One-way ANOVA, corrected for multiple comparisons (Sidak) was performed to assess group differences in the ROI measurements between CR and NC mice, with P ≤ 0.05 considered to be statistically significant.

RESULTS: As expected, histological assessment showed intense demyelination in the CC of the CR mice, as indicated by higher pixel intensity values relative to NC mice (Fig.1), with the aCC being both the least affected area and that with the greatest morphological heterogeneity. For DTI-derived diffusion metrics (FA, MD, D_a, and D_r), CR mice yielded results consistent with previous reports throughout the entire CC (i.e. reduced FA and increased MD and D_r in comparison to NC mice, except for the FA in the aCC). Similarly, all kurtosis metrics in the CR mice showed significant decreases, except for K_r in the aCC. For the WM model metrics, CR mice showed significant decreases in AWF in the entire CC, increased D_a, and decreased λ in bCC and pCC. (Fig.1). To investigate which metric would yield the strongest differentiation between the NC and CR, a mean effect size (Cohen’s d) was calculated for each metric at each CC level. In the aCC, AWF (d = 2.6) and K_r (d = 2.0) were the best differentiators.

In the aCC, where demyelination is almost complete, MD, λ, and AWF (d = 4.1, 3.8, 3.7, respectively) were the best differentiators. In the pCC, λ, FA and AWF (d = 3.4, 2.4, 2.3, respectively) best differentiated the two groups.

DISCUSSION & CONCLUSION: Group differences of all of the diffusion metrics closely mirrored the distribution of demyelination as measured by the Solochrome, particularly in the bCC and pCC. These results help validate our WM model. In the CR group, the WM metrics changed differently depending on the affected CC area; D_a was only increased at the bCC level, possibly reflecting the more intense axonal degeneration. D_a and λ significantly changed in the bCC and pCC, which is consistent with an increase of water in the extra-axonal space. Our results also suggest that the AWF is sensitive to changes in the volume fraction of myelinated fibers, by being significantly decreased in the entire CC, mirroring the histological degree of demyelination and axonal atrophy. Finally, AWF and K_r better captured the morphological heterogeneity seen at the aCC level, being the best group differentiators at this CC level. Overall, our results support the utility of DKI and the associated WM model metrics for characterizing changes associated with cuprizone-induced demyelination.


ACKNOWLEDGMENTS: This study was supported by NIH 5R03EB009711-2 (MFF) and 1S10RR023534-01.