\(^{1}\)H-\(^{13}\)C-NMR Study to Evaluate the Efficacy of Levodopa Treatment in MPTP Mouse Model of Parkinson’s Disease
Anant Bahadur Patel\(^1\), Anup Nirmal Chugani\(^1\), Rajeeva Voleti\(^1\), and Puneet Bagga\(^1\)
\(^1\)NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India

Introduction: Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide affecting 1-2% of population above 65 years of age\(^1\). MPTP mouse model is a well established neurotoxic model for studying the pathophysiology of PD as it mimics the specific degeneration of dopaminergic (DA) neurons in the substantia nigra\(^2\). The supplementation of DA by Levodopa (L-dopa) is the most widely used treatment for symptomatic relief in PD. The current study is intended to assess the effects of acute L-dopa treatment on glutamatergic and GABAergic functions in the cortical and striatal regions of brain in MPTP mouse model of PD.

Materials and Methods: Male C57BL6 mice (3-month old) were divided into 4 groups: Control (n=6), Control + L-dopa (n=6), MPTP (n=6), and MPTP + L-dopa (n=6). Mice were treated with MPTP (25 mg/kg, i.p.) or normal saline for 7 days, and L-dopa (140 mg/kg, i.p.) or normal saline on day 21. Paw grip strength was measured using grip strength meter on day 0, 8 and 21. For metabolic measurements, overnight fasted mice were anesthetized with urethane and administered \(^1,6-\)\(^{13}\)C\(^2\) glucose (0.225 M, i.v.) for 10 min\(^3\). At the end of the infusion, head was frozen in situ using liq. N\(_2\) and metabolites were extracted from cortical and striatal regions of brain\(^4\). \(^1\)H-\(^{13}\)C-NMR spectroscopy was carried out on tissue extracts for the measurement of concentration and \(^{13}\)C enrichment of neurometabolites\(^5\).

Results and Discussion: Paw grip strength in MPTP group mice was found to be significantly reduced (MPTP Control 670±140; 590±120 mN; \(p=0.00001\)) which recovered after acute L-dopa treatment (MPTP+L-dopa 640±81mN, Control+L-dopa 600±50, \(p=0.25\)). Level of glutamate (Control 12±0.6; MPTP 12.6±0.4 \(\mu\)mol/g, \(p=0.003\)), GABA (Control 4.7±0.3; MPTP 5.8±0.7 \(\mu\)mol/g, \(p=0.00002\)) and inositol (Control 7.0±0.4; MPTP 7.9±0.7 \(\mu\)mol/g, \(p=0.0003\)) was found be significantly increased in striatum of MPTP treated mice. The \(^{13}\)C labeling of Glu\(_{C4}\) (Control 2.29±0.3; MPTP 1.53±0.17 \(\mu\)mol/g, \(p=0.002\)), GABA\(_{C2}\) (Control 0.17±0.03; MPTP 0.12±0.004 \(\mu\)mol/g, \(p=0.03\)) and Gln\(_{C4}\) (Control 0.29±0.04; MPTP 0.15±0.03 \(\mu\)mol/g, \(p=0.0004\)) was lower in MPTP treated mice indicating a reduction in glutamatergic and GABAergic activity in cortical region (Fig. 1A). Similar results were found in the striatal region (Fig. 1B). Though acute L-dopa did not normalize the level of neurometabolites, it improved the cerebral activity as measured by \(^{13}\)C labeling of amino acids from glucose in cortex (Fig. 1A) and striatum (Fig. 1B). Since L-dopa is not able to restore the homeostasis of neurometabolites, it may not be a good strategy for the cure of PD. However, L-dopa offers an option for acute recovery of cerebral function.

Acknowledgements: This study was supported by funding from Department of Science and Technology, Government of India.

Fig 1. Concentration of \(^{13}\)C labeled amino acids from \([1,6-\)\(^{13}\)C\(^2\)]glucose at 10 min. A. Cortex and B. Striatum. \(*p<0.01, **p<0.001\) when compared with control (saline or L-dopa) or MPTP+L-dopa.