INTRODUCTION: Alzheimer's disease (AD) is associated with memory impairment and progressive loss of cognitive functions due to synaptic dysfunction and neuronal loss. Currently there is no quantitative diagnosis of AD in vivo. Finding of biomarkers specific to disease is the focus of the current AD research. APP-PS1 mice exhibit increase in amyloid plaque with age and more closely match the neurochemical profile and pathology of AD. The objective of the current study is to evaluate glutamatergic, GABAergic and astroglial metabolism and corresponding neurotransmitter cycling in different cerebral regions of APP-PS1 mouse model at very early (1 month), preclinical (6 month) and late age (12 month) by 13C-[1,6-13C]NMR spectroscopy together with infusion of 13C labeled substrates.

MATERIALS AND METHODS: All animal experiments were performed under the approved protocols by Institutional Animal Ethics Committee. Measurements have been carried out in APP-PS1 and age matched wild type (WT) mice. In vivo 13C NMR spectroscopy was carried out using 600 MHz (Bruker Avance) NMR microimager. For metabolic study, overnight fasted mice were anesthetized with urethane (1.5 g/kg) and tail vein was cannulated for the infusion of 13C labeled substrates. Mice were infused with either [1,6-13C]glucose or [2-13C]acetate as a bolus-variable rate infusion. Mice head was frozen in situ using liq. nitrogen at the end of the infusion. Metabolites were extracted from frozen brain tissue. Concentrations and percent 13C enrichment of metabolites were determined from the 13C-NMR spectrum of tissue extracts. The ratio, V_{cyc}/V_{bas}, obtained from steady state infusion of [2-13C]acetate was used as constraint during fitting of metabolic model to the measured 13C turnover of amino acids from [1,6-13C]glucose for the determination of absolute metabolic fluxes.

RESULTS AND DISCUSSIONS: Neurochemical profile remains unperturbed in early and preclinical age whereas level of NAA clinical symptoms while the astroglial function is enhanced at the late age of AD. APP-PS1 mice exhibit increase in amyloid plaque with age and more closely match the neurochemical profile and pathology of AD. The objective of the current study is to evaluate glutamatergic, GABAergic and astroglial metabolism and corresponding neurotransmitter cycling in different cerebral regions of APP-PS1 mouse model at very early (1 month), preclinical (6 month) and late age (12 month) by 13C-[1,6-13C]NMR spectroscopy together with infusion of 13C labeled substrates.

ACKNOWLEDGEMENTS: This study was supported by funding from Department of Biotechnology, Government of India.