Concentric Rings K-space Trajectory for Hyperpolarized 13C MRSI

Wenwen Jiang1, Michael Lustig2, and Peder Larson3

1UC Berkeley | UCSF Graduate Group in Bioengineering, Berkeley, California, United States, 2Electrical Engineering, University of California, Berkeley, Berkeley, California, United States, 3Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States

Target audience: MR pulse sequence design, Hyperpolarized 13C MRI, spectroscopic imaging scientists and engineers

Purpose: The powerful feature of hyperpolarized 13C MR metabolic imaging1 is that it can not only support the initial diagnosis of cancer but also can monitor its progress in terms of staging, restaging, treatment response, and identification of recurrence. However, the short-lived effect of hyperpolarization requires rapid and robust imaging techniques. Echo-planar-based spectroscopic imaging (EPSI) techniques are popular for acceleration in MRSI. The spectral bandwidth (SBW) of EPSI is limited by slew rate. System imperfections will induce undesirable ghosting artifacts for EPSI. Concentric rings k-space sampling has advantages of reduced slew rate, acquisition timesaving, and robustness to system delay and eddy currents, providing a powerful alternative for accelerating MRSI.

Theory: Concentric rings trajectories have smooth gradients waveforms, which are less demanding on the gradient amplifiers than for EPSI, given the same prescription. Each ring covers 4 quadrants in spatial k-space, which halves the total scan time. The symmetric property of the rings makes it robust to timing delays, which only result in rotation of the image. And its SNR efficiency is a constant of 87\%4,5 (the analyses are shown in Fig.1). Additionally, this non-Cartesian trajectory allows better control of variable density sampling and theoretically fits much better with parallel imaging and compressed sensing accelerations.6

Methods: Time-optimal gradient waveforms were designed based on Hargreaves’s work7 using MATLAB and CVX toolbox.8 Trajectory was designed for the 3.6x3.6 mm2 spatial resolution, 8x8 cm2 FOV and 500Hz SBW, 10Hz spectral resolution, as Fig.2 shows. The following acquisition parameters were used: TE/TR=120ms/200ms, 11 phase-encoded excitations with a progressive flip angle, resulting in a total scan time of 2.32s. The readout gradients were implemented in an adiabatic spin-echo sequence on a GE Signa 3T scanner. All the data were processed offline using MATLAB and SIVIC software (UCSF, San Francisco, CA). We performed normal rat experiments at 27 seconds after an injection of 2.2 mL of 100 mM hyperpolarized [1-13C] pyruvate (using an Oxford Instruments HyperSense polarizer).

Results and Discussion: In the in vivo hyperpolarized 13C MRSI study, we applied concentric rings sequence to sample the k-space data and the NUFFT algorithm9 for reconstruction. The results are shown in Fig.3. We also used the same sequence to image a GE proton phantom at 1mm resolution as reference. At that resolution, we noticed image artifacts due to concomitant gradients. These have little effect for the resolution of our 13C images, but if higher resolution is desired they should be corrected for.

Conclusion: Our preliminary results demonstrate the potential of using concentric rings in hyperpolarized 13C MRSI for a two-fold acceleration of EPSI.

References:

FIG. 1. Comparisons between rings, flyback EPSI and non-flyback EPSI acquisition: a. acquisition time; b. SNR efficiency; c. SBW with interleaved rings

FIG. 2. (left) Spatial k-space coverage of all rings; (right) A single ring retraced over time

FIG. 3. In vivo results on a normal rat (axial slice): a. proton image; b. 13C pyruvate image; c. 13C lactate image