19F-lanthanide complexes: T1 - and T2 - dependent signal gain using gradient echoes

Gisela E Hagberg1, Aneta Keliris2, Ilgar Mamedov1, Matteo Placidi3, Hellmut Merkle4, Nikos K Logothetis1, and Klaus Scheffler1,2

1Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany, 2High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, 3Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, 4LFMI-NINDS, National Institutes of Health, Bethesda, MD, United States

Introduction: 19F-labelled compounds have unique benefits for biological applications. Despite their potential, sensitivity in terms of the available signal-to-noise-ratio (SNR) in MR images is at stake [1]. A significant gain in SNR can be achieved in gradient echo (GE) FLASH images by lanthanide-complexes that shorten the 19F T1 and T2 relaxation times [2]. Other groups have shown how ultra-short TE MRI or RARE combined with compressed sensing techniques can be used to boost the 19F signal [3, 4]. GE imaging includes the longitudinal magnetization component only, while the balanced steady state free precession (bSSFP, tFISP) also includes the transverse magnetization component. We explored how these two types of gradient echo techniques perform for compounds with different 19F T1 and T2 relaxation times.

Methods: Calculations of the MRI signal for compounds with T2 between 0.1-400ms and T2/T1 ratios of 0.05-1 were performed. For each compound and MRI sequence, the optimal parameter setting that yields the highest signal was selected. Optimal parameters were found as follows: for each bandwidth, field-of-view (FOV) and matrix size, the minimum echo time TE_{min}, and repetition times were selected, dependent on the duration of the encoding and spoiler gradients. Finally the optimal flip angle was determined based on the compound and the sequence. A 7T (Bruker BioSpec 70/30, BGA-9S gradient insert, dual 1H/19F single loop surface coil) scanner and a fixed voxel size (1x1x5mm) were used for in vitro measurements. The following 19F lanthanide complexes were measured: LnF1 [2] (Ln= Ho, Dy, Gd) and GdF2 (uncleaved and cleaved by β-galactosidase) [5].

Results and Discussion: For tFISP the signal maximum occurs at higher bandwidths than for FLASH. Therefore shorter TE times can be used with tFISP, which increases SNR. The signal gain depends on the compound and on the duration of the encoding/spoiling gradients. Three ranges can be identified. For compounds with short T1 < ca 3ms and long T2 > ca 15ms, the tFISP signal is always greater while for compounds with intermediate T2 the FLASH signal can be greater if the duration of the encoding/spoiling gradients are sufficiently short. The SNR observed at 7T for the different compounds were in agreement with the signal calculations. For HoF1 (T2/T1=9.3/11.3ms) the SNR in vitro for a 5min measurement is similar with FLASH and tFISP: SNR=0.8/nmole, and corresponds to 3.5 for a 4-looped RFcoil, in agreement with [2]. None of the compounds were ‘ideal’ in the sense that they did not have the 19F T1 and T2 times that yields the highest possible signal. With the current approach, 19F compounds should have T2 times above ca 40ms and a T2/T1 ratio of 1 to reach at least 99% of the maximum signal.

References: