DO3A-benzothiazole conjugates for use as Gd-based theragnostic agents

Hee-Kyung Kim¹, Ki-Hye Jung², Min-Kyoung Kang³, Ji-Ae Park³, Eun-Young Jeon¹, Seung-Tae Woo¹, Joo-Hyun Kim³, Tae-Jeong Kim⁴, and Yongmin Chang⁵,⁶
¹Medical & Biological Engineering, Kyungkook National University, Daegu, Korea, ²Applied Chemistry, Kyungkook National University, Daegu, Korea, ³Molecular Imaging Research Center, Korea Institute of Radiological & Medical Science, Seoul, Korea, ⁴The Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungkook National University, Daegu, Korea, ⁵Bayer Healthcare, Medical Care, Seoul, Korea, ⁶Diagnostic Radiology and Molecular Medicine, Kyungkook National University, Daegu, Daegu, Korea

Introduction

Magnetic resonance imaging (MRI) has proved to be a powerful non-invasive technique. The prominent advantage of MRI is a high spatial resolution and the ability to distinguish soft tissues. The contrast of the resulting image can be enhanced by injection of paramagnetic or superparamagnetic agents. Paramagnetic gadolinium (III) complexes, for example, are most widely used in MRI as water relaxation agents to improve image contrast. In addition, the therapeutic potential of gadolinium has also been noted and has drawn a great deal of investigation for some time. Investigations have so far been focused on such areas as Gd-based neuron capture therapy (Gd-NCT) and chemotherapy, and yet no clinical applications have so far been reported. In this regard we have designed and synthesized a new family of bifunctional chelates, DO3A-benzothiazole conjugates for gadolinium complexes (Gd-DO3A-BT) as potential theragnostic agents. Benzothiazoles are known to possess potent antitumor properties in select breast, ovarian and renal cancer cell lines. In this studies are presented their synthesis, MR properties, tumor-targeting and anti-tumor activities on cultured breast cancer cell line MCF-7.

Material and Methods

All reagents were purchased from commercial sources and used as received. Characterization of new compounds have been performed by analytical and various spectroscopic techniques (NMR, IR, MS). The relaxivity measurements were carried out using an inversion recovery method with variable inversion time (TI) at 1.5 T (64 MHz). TI relaxation times were obtained from the non-linear least square fit of the signal intensity measured at each Ti value. For in vivo MRI, the mice were anesthetized by 1.5% isoflurane in oxygen. MR images of anesthetized mice (n=4) were obtained pre- and post- Gd-DO3A-BT (0.1 mmol Gd/kg) injection by tail vein with a 1.5 Tesla (T) MR unit (GE Healthcare, Milwaukee, WI, USA) with home-made small animal RF coil. The coil was of the receiver type, and the inner diameter of the coil was 50 mm. The imaging parameters for SE (Spin echo) were as follows: repetition time (TR) = 300 ms; echo time (TE) = 12 ms; 7 mm field of view (FOV); 192x128 matrix size; 1.2 mm slice thickness; number of acquisition (NEX) = 8.

Results and Discussion

Scheme 1 shows the synthesis of Gd-DO3A-BT. Its R₁ relaxivity is 3.84 molar-¹sec-¹, almost the same values as that of structurally related Dotarem⁷ (R₁=3.69 molar-¹sec-¹) (Table 1). Figure 1 shows in vivo coronal images of mice obtained by tail vein injection. The pattern of enhancement compares well with that of liver-specific MRI CAs such as Primovist⁸ and Multihance⁹ in that heart and abdominal aorta are enhanced specifically and enhancement lasts as long as 1 h. More characteristically, it is to be noted that excretion is made via bile duct, confirming hepatobiliary uptake. Figure 2 shows T₁-weighted MR images of MCF-7 cells incubated with Gd-DO3A-BT (100 μM) for 18 h, revealing the tumor-specific nature of the present series. In addition, Table 2 shows antitumor activity of the present system represented as GI₅₀ (the ability to inhibit cancer cell growth) and TGI (the concentration of Gd-complex needed to cause total growth inhibition) toward MCF-7 cells after exposures for 18 h.

Conclusions

We have successfully synthesized Gd-DO3A-BT as a new family of multifunctional MRI/optical imaging probes with concomitant antitumor activity as well as tumor-specificity.