DCE/DSC MRI studies of intracranial mouse glioma: enhanced anti-vascular/anti-tumor efficacy of Cediranib via combination with the autophagy inhibitor Quinacrine

Merryl Lobo1,2, Sarah Green1, Matthias Schabel1, Yancey Gillespie4, Randall Wolter1, and Martin Pike1,2
1Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States, 2Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States, 3Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States, 4Departments of Surgery, Microbiology and Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States

Introduction: Malignant glioma, affecting 12-15,000 people per year in the U.S alone, allows only a 14 month average survival for the most common form, glioblastoma multiforme. Despite the induction of robust angiogenesis, anti-angiogenic monotherapy has largely failed to induce durable responses, with tumors developing treatment resistance by adapting to hypoxic/nutrient stress or circumventing the direct cytotoxic cell signaling changes caused by treatment. Recent studies have shown that autophagy, a cellular degradation pathway that provides energy and biosynthetic substrates, could be an important drug target and resistance mechanism. Late stage inhibition of this process could cause an accumulation of autophagic vacuoles, which has been shown to trigger cell death. Quinacrine, an FDA-approved drug for malaria, is a potent late stage autophagic inhibitor. We hypothesized that the anti-angiogenic/anti-tumor efficacy of Cediranib, a pan VEGFR (vascular endothelial growth factor receptor) and PDGFR (platelet derived growth factor receptor) inhibitor, will be synergistically enhanced in intracranial glioma via combination with Quinacrine. For this study, we have employed the syngeneic intracranial mouse 4C8 glioma model, and have utilized a comprehensive, perfusion MRI approach by sequentially implementing dynamic contrast enhanced (DCE) MRI and dynamic susceptibility contrast (DSC-MRI) to noninvasively quantify key vascular biomarkers, including Ktrans (contrast agent extravasation rate constant), a measure of vascular permeability, blood flow (CBF) and blood volume (CBV), while monitoring tumor growth.

Methods: Brain tumors were induced by intracerebral injection of 4C8 glioma cells in B6D2F1 mice (n=24). After MRI screens determined tumor growth had initiated, mice pretreatment perfusion scans were obtained and mice were randomized into untreated (U, vehicle), Cediranib (C, 6 mg/kg daily), Quinacrine (Q, 50mg/kg daily), and Cediranib plus Quinacrine (C+Q) groups, after which additional perfusion scans were obtained biweekly, using an ultra-high field Bruker-Biospin 11.75T MRI instrument. DCE-MRI was implemented using a spoiled GE-FLASH fully relaxed (M0) precontrast image (TR 6000 ms, TE 1.2 ms, FA 90°, 1 slice (1 mm thick), 195 μm in-plane resolution) followed by the DCE T2, weighted image series (450 images) using except with TR 15.6 ms and FA 20° (2.0s/image) during which Gd-DTPA was injected (Magnevist, Berlex Inc, i.v., 10X diluted, 3.0 μl/g, 0.15 mmol/kg). The arterial input function was determined by blind estimation5,6 from the tumor tissue response and Ktrans calculations followed the general approach described in Tofts PS et al., modified to include a blood plasma volume term (vB,7). DSC-MRI was then implemented (150 T1w weighted images, Paravision FLASH, TR 8, TE 4.2 ms, FA 5°, 195 μm in-plane resolution, 1 s/image) employing Feridex, an SPIO agent (Berlex Inc, 4X diluted, 2.4 μl/g, 26.9 μg iron/g). CBF, CBV calculations followed the model-independent method described in Ostergaard L. et al. A multislice T2* weighted image set (spin echo RARE, 98 μm in-plane resolution) was obtained to assess tumor volume. The two-tailed Unpaired Student’s t test was employed to test for statistical differences for the MRI data.

Results: T2* weighted imaging revealed that C+Q tumor size was reduced by 60% in comparison to U at 11 days of tumor growth (p<0.05), while single agent groups, C or Q were not significantly different from U. Consistent with this, mean exponential growth rate constants for C+Q were 0.12±0.01 versus U (0.26±0.03, p<0.0014), while Q (0.21±0.01, 25.5±1.9, p < 0.0001) versus U (9.5±1.1) was substantially extended with C+Q (25.5±1.9, p < 0.0001) versus U (9.5±1.1), while C only slightly improved survival (14±0.5, p<0.05 vs U) and Q had no significant effect (10±1.8). The parametric maps in Figure 1 show that rCBF and Ktrans values in the U and Q groups indicated generally high values with a heterogeneous distribution typical of glioma. Cediranib effectively curbed vasculature development in the tumor core but a persistent, well vascularized rim remained resistant to treatment. In contrast, C+Q tumors showed dramatic reductions in Ktrans and rCBF across the tumor, with a much thinner angiogenic rim. Figure 2 indicates mean tumor values of these parameters over time, and shows that these reductions occurred rapidly with treatment and persisted throughout the treatment period. Substantial increases in rCBV occurred in tumor growth in U and Q, which indicated values of (5.11±0.38), and Q (4.07±0.5) respectively, at 11 days after tumor growth initiation. In comparison, rCBV was slightly attenuated in C (3.82±0.26, p<0.05 versus U), and substantially attenuated in C+Q (2.43±0.37, p<0.05 versus U). Taken together, the perfusion MRI results indicate that C+Q treatment had a profound effect on the tumor vascular network, effectively slowed tumor growth and extended survival in 4C8 mouse glioma. Histological approaches further corroborated these results, showing a 2-fold reduction in mean vessel density (p<0.01 vs U, with CD31 staining) and 3-fold increase in tumor necrosis (p<0.05 vs U, with Hematoxylin & Eosin staining) with C+Q treatment.

Conclusion: In summary, using a novel treatment combination with the intracranial 4C8 mouse glioma model, we documented a synergistic increase in anti-vascular/anti-tumor efficacy of anti-angiogenic inhibitor Cediranib in combination with the autophagy inhibitor Quinacrine, using a comprehensive DCE/DSC perfusion MRI approach and immunohistochemistry. We showed a markedly decreased tumor perfusion and tumor growth, increased tumor necrosis and improved survival, suggesting a new and promising treatment avenue for malignant glioma.

References: