Introduction: Free phospholipid metabolites such as phosphomonoesters (PME) and phosphodiesters (PDE), which can be detected non-invasively with 31P Magnetic Resonance Spectroscopy (MRS), are potential biomarkers for cancer diagnosis [1] and anti-cancer treatment evaluation [2]. Because of the intrinsically low sensitivity of the phosphorous nucleus, applying a high magnetic field strength can increase the signal-to-noise-ratio (SNR) of 31P MRS. Another way of increasing SNR is to apply polarization transfer (PT) methods such as refocused insensitive nuclei enhanced by polarization transfer (RINEPT) [3]. PT techniques transfer the polarization of the excited proton spins through J-coupling to the phosphorous spins during the time period of TEH (Fig. 1). However, due to the small $J_{\text{H-P}}$-coupling constants, the optimal duration of TEH for polarization transfer is relatively long, which in high field causes substantial signal loss due to T2 relaxation. However, PT may be advantageous even at high field strengths for removing broad resonances from macromolecules that do not possess H-P J-coupling. In addition, it may be useful for removing strong disturbing signals from highly concentrated 31P metabolites even outside the region of interest (chest muscle). In this study, we have validated this hypothesis by comparing the PT technique with direct 1H* pulse acquire (PA) at 9.4T in both less aggressive MCF-7 and more aggressive MDA-MB-231 breast cancer models. We have validated our in vivo PME and PDE quantification results with ex vivo 31P high resolution (HR) MRS of tumor extracts.

MRS methods: Approximately 2x107 MDA-MB-231 or MCF-7 cells were inoculated in the mammary fat pad of female athymic nude mice to grow tumors. In vivo 31P MRS was performed on a 9.4T Bruker Biospec spectrometer. A home-built double tuned solenoid coil with an inner diameter of 12 mm was used. A RARE image was acquired with echo time (TE) of 7.2ms, repetition time (TR) of 500ms, RARE factor of 4. Non-localized PA 31P MR spectra were acquired with an adiabatic excitation (BIR4 45°, 200μs, 120ppm bandwidth), repetition time of 1s, and 2000 scans. Subsequently, an MR spectrum was acquired using the adiabatic version of the refocused insensitive nuclei enhanced polarization transfer technique (BINEPT) with a repetition time of 1s and 2000 scans. Segmented BIR4 pulses (400μs per segment, 35ppm bandwidth) and a full BIR4 180° (400μs, 35ppm bandwidth) pulse were used (Fig. 1). Both TEH and TE31P were set to the optimal echo time of 34ms for detection of phosphocholine (PC) and phosphoethanolamine (PE). Metabolite levels were fitted and quantified using JMRUI 4.0 software. Metabolite levels of both PA and BINEPT spectra were corrected for 1H and 31P T1 and T2 relaxation accordingly. Tumors were taken out directly after in vivo MRS measurements, and methanol/chloroform/water based dual-phase extraction [4] was performed to extract water-soluble intracellular metabolites. The HR-MRS was performed on the tumor extracts with a Bruker 11.7T spectrometer. The HR-MRS data were processed using the MestReC 4.9.9.6 software, and the metabolite levels were corrected for differences in 31P T1 relaxation time.

Results and Discussion: Seven MCF-7 mice and four MDA-MB-231 mice were studied in this experiment. Besides signals of PME and PDE, the signals of inorganic phosphate (P), PCr and α-, β-, and γ-nucleotide triphosphates (NTP) were identified in the PA 31P MR spectra (Fig. 2). The BINEPT MR spectrum has a flat baseline, which facilitates PME and PDE analysis using line-fitting algorithms. It is even possible to partially resolve the PME signal into PE and PC, and the PDE signal into GPE and GPC (Fig. 2). When comparing the ratios of metabolites from three different types of measurement (in vivo PA, in vivo BINEPT, and ex vivo HR-MRS, see Fig. 3), the PE/GPE ratio cannot be assessed accurately in the PA measurement since GPE is hardly visible, particularly in MDA-MB-231 tumors. The PC/GPC ratio in in vivo BINEPT measurement is similar to that obtained from ex vivo HR-MRS data, whereas PC/GPC in in vivo PA data is somewhat higher. The PE/PC ratios in both PA and BINEPT measurements match the ex vivo measurement equally well. Higher PC/GPC levels were reported previously in more aggressive cancer cell lines [5], however, we found no significant differences but a trend towards a higher PC/GPC ratio in less aggressive MCF-7 compared to more aggressive MDA-MB-231 tumors. This observation could be related to effects of the tumor microenvironment on the PC/GPC ratio in tumor xenografts, which were not present in cell lines in culture. Furthermore, metabolite levels measured in cell cultures depend on the proliferative stage of the cells, which affects phospholipid metabolism and transcript levels as reported previously [6]. In conclusion, our data suggest that BINEPT can be advantageous for studying the individual compounds in phospholipid metabolism in translational research in breast cancer and other cancers in vivo at high magnetic field strength.