Micro-mechanical Modeling in the Nonlinear Regime for Assessing Indices of Bone Strength from High-Resolution MR Images

Ning Zhang1, Jeremy Magland1, Chamith Rajapakse1, and Felix Wehrli1
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States

Introduction: Osteoporosis is a common bone disorder characterized by decreased bone strength that leads to increased risk of fracture. Assessment of osteoporotic fracture risk on the basis of in-vivo images would be of considerable clinical interest. High-resolution MR (μMR) image-based linear micro-finite element (μFE) modeling has been used to estimate bone elastic parameters [1], but it cannot directly assess bone strength and fracture risk. In contrast, nonlinear analysis has the potential of providing more direct predictions of bone failure behavior [2,3]. Bone strength represents the maximum stress that bone can hold before failure, thereby depending on not only yield but also post-yield properties.

In this work, we present a program for nonlinear μFE modeling of trabecular bone (TB) strength and failure mechanisms based on in-vivo μMR images as input into the model. The algorithm was implemented through iteratively executing a computationally efficient algorithm for linear μFEA [4] in conjunction with establishment of a strain-based criterion for adjusting TB tissue-level modulus. To assess its performance, the serial reproducibility and reliability of TB yield and post-yield parameters were evaluated in view of applying the technique to the study of the effect of intervention in patients at risk of fracture.

Methods:
Image acquisition and processing: In-vivo μMR images of the right distal radius from twenty women (ages: 50-75) had been acquired previously [5] at three time points (over an 8-week period) using a 3D FLASE sequence [6] with a 137x137x410 μm³ voxel size at 1.5T field strength. All images were first corrected for subject motion and follow-up images were retrospectively registered to baseline images. The resulting images were then masked to isolate the TB region and processed to generate grayscale bone volume fraction (BVF) maps [4] as input into the nonlinear model.

Nonlinear μFE model: TB yield and post-yield parameters were estimated by solving a series of nonlinear systems with incrementally applied deformations (simulated as increased strain values) using an iterative algorithm. Tissue-level modulus depends on each element’s deformation and is adjusted at each iteration according to

\[E(\varepsilon_{\text{tissue}}) = (\varepsilon_{\text{tissue}}/50 + 0.05) \times 15 \text{GPa} \]

where \(\varepsilon_{\text{tissue}} \) is the tissue-level effective strain calculated for each element using \(\varepsilon_{\text{tissue}} = \sqrt{2 \times SED/E} \). \(E=15 \text{GPa} \) and \(SED \) stands for strain energy density, which is obtained from solving a linear system using the computationally optimized linear solver [4]. Boundary conditions were set to represent axial compression with no friction along the transverse directions.

Stress-strain curves were obtained as the best-fitted cubic polynomial to the points of applied strains and resultant stresses. The apparent yield stresses and strains were then estimated based on the 0.2% offset rule [3]. The ultimate stress was taken as the maximum stress of the stress-strain curve, and fracture toughness was calculated as the area under the stress-strain curve from zero to the ultimate strain point. Coefficients of variation (CV) and intra-class correlation coefficient (ICC) were calculated as metrics on reproducibility and reliability.

Results and Discussion: Micro-FE modeling contained an average of 65.2 thousand elements requiring 13.7 minutes on average for analyzing 61 strain levels on a desktop computer with four dual processors (i7-2600 3.40 GHz CPUs) and 8 GB of RAM. Good visual reproducibility and anatomical alignment are illustrated by the cross-sectional images as well as their BVF maps from a subject at three scan time points (Fig. 1), suggesting accurate registration. Examples of estimated stress-strain curves (Fig. 2) demonstrate within-group similarities and between-subject variations in the simulated results. The mean (±S.D.) of the estimated yield stress, yield strain, ultimate strain and fracture toughness were 3.09 ± 1.01 MPa, 0.78 ± 0.05%, 3.48 ± 1.05 MPa, 1.35 ± 0.21 kPa, respectively. ICCs ranged from 0.986 to 0.994 with an average value of 0.991 and mean CVs ranging from 1.0 to 5.6% with an average of 3.5%, indicating that between-subject variations dominated over within-subject variances for all estimated parameters. Further, test-retest plots (Fig. 3) depict high correlation (\(R^2 \geq 0.94 \)) between estimates at baseline and follow-ups, consistent with the computed ICCs and CVs.

Conclusion: A new nonlinear μFE model for TB yield and post-yield properties was developed and its performance evaluated. Results suggest that the yield and post-yield parameters derived from the nonlinear model have adequate reproducibility to evaluate treatment effects in interventional studies within short follow-up periods.

Fig. 1. (a) Cross-sectional μMR images, (b) BVF maps and (c) magnified 3D volume renderings of a small sub-region for a subject at three scan time points: (I) baseline; (II) follow-up 1; (III) follow-up 2, visually illustrating similarities across.

Fig. 2. Simulated stress-strain curves from two subjects at three time points (blue: baseline; red: follow-up 1; green: follow-up 2).

Fig. 3. Test-retest plots (blue: follow-up 1 versus baseline; red: follow-up 2 versus baseline; light grey: the line of identity) showing high reliability in all estimates (\(p < 0.0001 \)).

Acknowledgement: NIH grants R01 AR55647 and R01 AR53156.