Pre-treatment hepatic arterial mapping with MRI in cirrhotic patients with hepatocellular carcinoma (HCC)
Iva Petkovska1, Manojkumar Saranathan1, Thomas Hope1, Brian Hargreaves1, Umar Tariq1, and Shreyas Vasanawala1

1Radiology, Stanford University, Stanford, CA, United States

Purpose: Assessment of hepatic arterial anatomy prior to transcatheter arterial chemoembolization (TACE) is critical [1,2]. Here we assess the quality of the vascular roadmap from high spatiotemporal resolution contrast-enhanced angiographic and arterial phase MR images of cirrhotic patients with HCC and compare with findings on catheter angiogram as a gold standard.

Methods: After IRB approval we retrospectively identified 21 consecutive cirrhotic patients with HCC scanned with a dual-echo SPGR acquisition and a view shared 2-point Dixon reconstruction (Differential Sub-Sampling with Cartesian Ordering, DISCO [3]); 29 lesions with imaging findings concerning for HCC and size 10 mm or larger were identified. Imaging parameters were: TE/TEe/TR 1.2/2.4/4.3 ms, 15° flip, 3mm thick, matrix 320x224, parallel imaging acceleration 2 (phase direction) x 2.5 (slice direction). Following contrast injection (single dose of gadolinium administered at 2.5 mL/s), 5-7 phases were acquired in a 20-28s breath-hold, yielding a 4s temporal frame rate. Visibility of the common (CHA), proper (PHA), right (RHA) and left (LHA) hepatic arteries and segmental branches (SB, overall delineation through liver) was graded on a 5 point scale (1-not seen, 2-poor delineation due to low signal intensity and/or marked blurring, 3-moderate enhancement and/or blurring, 4-high signal intensity and slight blurring and 5-high signal and no blurring). Visualization of tumor feeding vessels (TFV) and donor vessel to feeders (DV) was graded on a 5 point scale (1-absent, 2-probably absent, 3-indeterminate, 4-probably present and 5-present [Fig.2, 4]). Grading scores were grouped in analyses as acceptable (3-4-5) or unacceptable scores (1-2). Variant arterial anatomy and presence of an extra-capsular feeding branch may aid pre-tr.

Results: Acceptable visibility of the CHA and PHA in 21 (100%, 95%CI: 0.84-1), RHA and LHA in 20 (95%, 95%CI: 0.77-0.99) and SV in 18 cases (86%, 95%CI: 0.65-0.95) was seen (Fig.1). Tumor sizes were 10-54 mm (median 16mm). Acceptable visualization of TFV and DV was seen in 19/29 lesions (66%, 95%CI: 0.5-0.8), (Fig.3). DV was identified as follows: RHA in 5 (1-V, 2-VIII, 2-IVA/VIII), anterior RHA in 5 (VII/VIII-1, VIII-2, IV/VIII-2), posterior RHA in 5 (VI-2, VII/VII-2, VII-1) and LHA in 4 cases (II-1, II/III-1, III-2); Roman numerals here indicate liver segment. In 11/14 lesions with catheter angiogram, the main donor to segmental vessel embolized was concordant (79%, 95%CI: 0.5-0.9); three lesions were hypovascular on angiography (Fig.3). In 3/14 lesions with catheter angiogram findings were discordant, neither TFV nor DV identified on MRI; two lesions were hypovascular on angiography (Fig.3). In 14/14 lesions with catheter angiogram a concordant finding of absence extracapsular feeding branches (100% specificity,) and presence/absence of variant arterial anatomy was noted (100% sensitivity) (95%CI: 0.73-1).

Conclusion: High spatial and temporal resolution multiphasic contrast enhanced liver MRI via view sharing yields multiple angiographic and arterial phases within single breath-hold and enables depiction of vascular anatomy with acceptable quality and concordant findings with catheter angiogram. Identification of variant vascular anatomy, absence of an extra-capsular feeding branch and main donor to segmental vessel to be embolized may aid pre-treatment planning in HCC.