T2* measurement of the pituitary with susceptibility artifact compensation at 3T

Yoonho Nam1, Eung Yeop Kim2, and Dong-Hyun Kim1

1School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea, 2Department of Radiology, University Hospital, Cincinnati, Ohio, United States

Introduction: Preclinical diagnosis of iron overload in the pituitary gland is important for chronically transfused patients with hemoglobinopathies such as thalassemia.1,2 T2* measurement is very sensitive for detecting iron deposition in several tissues but severe susceptibility artifact (due to sphenoid sinus) makes T2* measurement in the pituitary gland difficult. Instead, T2 measurement or T2*-weighted imaging have been used to assess iron deposition in the pituitary gland.1,3 In this study, we propose a T2* measurement method based on field map analysis and susceptibility artifact correction in the pituitary gland ultimately aimed at evaluating iron overload.

Methods: To investigate the distribution of the susceptibility induced gradients in the pituitary gland, isotropic 3D multi-echo gradient echo images (Fig. 1) were acquired at 3T clinical scanner (Siemens Tim Trio) with following parameters: TR=60ms, TE=3.1/3.3/11.5/17.9/24.1/32.4/32.6ms, voxel size=1x1x1mm³, matrix size=256x256x104, flip angle=12°. B0 field map was calculated from phase images of 1st echo (sagittal imaging) for T2* estimation (sagittal imaging) and can be obtained three high resolution (0.45x0.45x1.8mm³) images (left) and the averaged slice (right). Magnitude slices including the pituitary gland. (a) uncorrected and (b) corrected (using compensation gradient) magnitude images at different echo times.

Results: Figs. 2 and 3 show that the ΔGx distribution is relatively homogeneous in the pituitary gland compared to those of ΔGy and ΔGz, particularly, in the mid sagittal slices (s127-s129). Therefore, sagittal imaging is advantageous to reduce susceptibility artifacts in 2D high-resolution imaging. While signal losses are prominent in the pituitary gland in the uncorrected magnitude images as TE increases, these signal losses are mostly recovered in the x-shim compensated corrected images (yellow arrow in Fig.5). The corrected T2* values in the pituitary gland (Fig. 6) show comparatively homogeneous distribution except in some parts of the inferior posterior regions (red arrow in Fig. 5) and the ROI T2* values (8x8 red box in Fig. 6) are agree well between the two scans.

Conclusion: We present a method for T2* measurement in the pituitary gland. We analyzed field distribution using isotropic 3D GRE imaging data, and proposed T2* measurement method using high-resolution 2D GRE imaging with additional compensation gradients in the slice-selection direction. Our proposed method shows increased T2* measurement value which is due to the susceptibility correction in most pituitary gland regions and can be acquired within a reasonable scan time (5 min). To demonstrate applicability of our method, we will perform further scans and investigate the intra-subject reproducibility, inter-subject variation and head position dependency of the pituitary gland’s T2*.

Acknowledgements: This work is financially supported by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement in Technology (KIAIT) through the Workforce Development Program in Strategic Technology, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-009903).
