Cerebral arterial blood volume and blood flow in hypertensive and normotensive rats

Tae Kim¹ and Seong-Gi Kim¹

¹University of Pittsburgh, Pittsburgh, PA, United States

Introduction

In chronic hypertension, the structure of cerebral arterial vessels becomes altered to cope with increased arterial vessel resistance. It produces a narrowed lumen of arterial vessels (1,2), reducing arterial cerebral blood volume (CBV_a). These alterations in arterial blood vessels are concurrently associated with cerebrovascular diseases, such as stroke, vascular dementia, and cognitive impairment. Since hypertension most alters the arterial side of vessels, noninvasive imaging assessment of CBV_a is of great clinical relevance for the early diagnosis of hypertension vascular dysfunction. In this study, we applied magnetization transfer (MT)-varied arterial spin labeling (ASL) technique (3) to a well-established hypertensive animal model (spontaneously hypertensive rats, SHR) and a control model (Wistar Kyoto rats, WKY) to assess quantitative CBV_a and cerebral blood flow (CBF) mapping for regional detection of hypertensive cerebrovascular morphological changes in the baseline condition.

Methods

3 - 5 months old of eight SHR and nine WKY were used. The animals were anesthetized with ~ 1.3 % isoflurane with air supplemented with O₂ to attain a total O₂ level of ~30%. Rectal temperature, blood pressure and blood gases were maintained within normal physiological ranges. Five 2-mm thick coronal slices were acquired on a 9.4 T/31 cm Varian NMR system using the single-shot spin-echo echo planar imaging (EPI) technique with matrix size of 64 (readout) × 32 (phase-encoding) and FOV = 3.0 × 1.5 cm². Two actively detunable RF coils were used; a neck coil provided arterial blood signals; pairs of interleaved ASL and MT pulses were repeated during the spin preparation period (2.75s). TR = 3 s and TE of 18 ms were used. CBV_a and CBF were determined from the slope and intercept of the linear fit of normalized ASL (ΔS_{sat}/S₀) vs. control (S_{sat}/S₀) values at the two MT levels. Since steady state was not achieved during the relatively short spin preparation period, CBF values were corrected by multiplication with [1-exp(-TR/T_{1app})], where T_{1app} (apparent T₁) = 1.9 s.

Results and Discussion

Quantitative multi-slice maps of CBV_a (units of ml/100 g) and CBF (units of ml/100 g/min), with T₂-weighted anatomical images were obtained for SHR (MABP ~140 mmHg) and WKY (MABP ~90 mmHg) rats. Fig.1 shows CBF and CBV_a maps from a representative animal of each group, and Fig.2 shows regional baseline values for SHR vs. WKY. Quantified CBV_a values from SHR were generally smaller than those from WKY, while CBF values were less different agree with previous finding (4). Hippocampal values of CBV_a in SHR are significantly lower than those of SHR (*p < 0.01), indicating that region-dependent hypertension-induced cerebrovascular changes may indeed occur. The smaller CBV_a of hippocampus in SHR is possibly related to vascular dementia of this model (5). This study shows CBV_a can be a key indicator to detect regional cerebrovascular impairment in hypertension and follow its progression as hypertension advances.