Validation of atherosclerotic plaque composition and structure at 7T and 3T MRI

Maria del Rosario Lopez Gonzalez, Sin Yee Foo, William M Holmes, Willie Stewart, George Welch, Barrie Condon, Keith W Muir, and Kirsten Forbes
1Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, United Kingdom, 2School of Medicine, Glasgow, Scotland, United Kingdom, 3Department of Neuropathology, Southern General Hospital, Glasgow, Scotland, United Kingdom, 4Department of Vascular Surgery, Southern General Hospital, Glasgow, Scotland, United Kingdom, 5Institute of Neurological Sciences, Southern General Hospital, Glasgow, Scotland, United Kingdom

Background

Stroke is the third leading cause of death and the single largest cause of disability in the UK [1]. Eighty percent of strokes are ischaemic stroke, and approximately 25-50% of these are caused by carotid atherosclerosis [2]. While carotid endarterectomy (CEA) is a useful procedure to reduce the risk of stroke in patients with moderate or severe stenosis, 70% of symptomatic patients with severe stenosis remain stroke-free over the next 5 years with medical therapy alone [3]. Others with lesser grade stenosis may progress more rapidly to stroke, due to underlying active atherosclerotic plaque. Outcomes from CEA could be improved by targeting treatment at high-risk subgroups and not simply relying on the degree of stenotic measurement [4].

The aim of this project is to validate non-invasive in-vivo (3T) and ex-vivo (7T) MRI with histopathological examination to assess atherosclerotic plaque composition.

Methods: Thirty three endarterectomy cross sections, from 14 patients, were studied. The datasets consisted of in-vivo 3T MRI, ex-vivo 7T MRI and histopathology.

In-vivo: Imaging was carried out using a 3T MRI GE Signa Excite HD and a 4-channel surface coil. The imaging protocol was: Time-of-Flight (TOF) MR angiogram (MRA) of carotid bifurcations (TR/TE/flip Angle/slice thickness: =16.52ms/3.848ms/slice 7mm, 89 slices), axial 2D FSE (fast spin echo) double inversion recovery (DIR; TI: 1550ms, sat fat), peripheral cardiac gating: T1-W (TR/TE:722-1034ms/7-12ms), PD-W (TR/TE:1411-2857ms/8-21ms) & T2-W (TR/TE:1237-2105ms/57-62ms, depending on heart rate) +/-T1-W post gadolinium. 3-5 slices (2-2.5mm), FoV: 140mm, 512 matrix.

Ex-vivo: CEA specimens were immediately fixed following surgical removal in 10% formaldehyde. They were rehydrated in sterile phosphate buffer saline (PBS), at room temperature for 24 hours prior to scanning and then placed in a de-gassed Fomblin-filled syringe along with a phantom (1g/l MgCl2 sterile phosphate buffer saline (PBS), at room temperature for 24 hours prior to scanning and then placed in a de-gassed Fomblin-filled syringe along with a phantom (1g/l MgCl2) for imaging. The MRI system used was a 7T Bruker Biospin Biospec 70/30 MRI (35mm Bruker birdcage). The protocol included: T1-W FLASH (TR/TE/flip angle: 40ms/2.315 ms/30°), peripheral cardiac gating: T1-W (TR/TE:722-1034ms/7-12ms), PD-W (TR/TE:1411-2857ms/8-21ms) & T2-W (TR/TE:1237-2105ms/57-62ms, depending on heart rate) +/-T1-W post gadolinium. 3-5 slices (2-2.5mm), FoV: 140mm, 512 matrix.

Histology: Following ex-vivo MR, the specimen was divided into approximately 5 sections, each embedded en bloc in paraffin wax. 4 μm thick sections were taken from each section and stained with haematoxylin & eosin (H&E) and Miller’s elastin/van Gieson (EVG).

Data analysis was carried out using Analyze (AnalyzeDirect, Inc.) for co-registrations, and a semiautomated method was programmed in Matlab (MatLabWorks, Inc.) for image segmentation. MRI signal from the different image-weightings were used to provide evidences that 3T/7T MRI techniques might help to determine atherosclerotic plaque composition by comparing with the histology. Results showed good correlation between MRI and histopathological analysis, although haemorrhage (r = 0.26, p = 0.437) at 3T MR was poorly correlated with histology; calcification (r = 0.4, p = 0.22) and LR/NC without haemorrhage (r = 0.4, p = 0.23) at 7T showed less good correlations with histology. This study provides evidences that 3T/7T MRI techniques might help to determine atherosclerotic plaque composition by comparing with the composition defined by histology. A combination of different MRI techniques might help to improve haemorrhage identification.

Figure. Multicontrast weighted images (T1-w, T2-w, PD-w and ADC) of vulnerable plaque at the common and the bifurcation were obtained in vivo (G-I and M-O) and ex vivo (A-F). Asterisks indicate the lumen. Histological images stained with haematoxylin & eosin digitised (J and L). Head arrow indicates the plaque location.

Results and Conclusions: 3T/7T MRI and histology measurement showed no significant differences, except for 7T LR/NC (Lipid Rich/Necrotic Core) without haemorrhage and haemorrhage, but combined LR/NC with haemorrhage presented non significant difference in the average area per plaque by a paired t-test. The results showed good correlation between MRI and histopathology measurements, although haemorrhage (r = 0.26, p = 0.437) at 3T MR was poorly correlated with histology; calcification (r = 0.4, p = 0.22) and LR/NC without haemorrhage (r = 0.4, p = 0.23) at 7T showed less good correlations with histology. This study provides evidences that 3T/7T MRI techniques might help to determine atherosclerotic plaque composition by comparing with the composition defined by histology. A combination of different MRI techniques might help to improve haemorrhage identification.