Impaired Cerebrovascular Reactivity (CVR) in MS Measured with Hypercapnia Perfusion MRI

Yongxia Zhou1, Hanzhang Lu2, Feng Xu2, Damon Kenu1, Hina Jaggi1, Joseph Herbert2, Ilya Kister3, Robert I Grossman1, and Yulin Ge1

1Radiology/Center for Biomedical Imaging, New York University Langone Medical Center, New York, NY, United States, 2University of Texas Southwestern Medical Center, Dallas, TX, United States, 3Multiple Sclerosis Comprehensive Care Center, New York University Langone Medical Center, New York, NY, United States

PURPOSE: The decreased ability of cerebral blood flow (CBF) modulation in cerebral cortex, secondary to overproduced NO, might be an underlying cause of accumulation of diffuse neuronal/axonal loss and progressive neurological deficits in multiple sclerosis (MS) [1]. CO2 is a potent vasodilator, and an increase of CO2 tension in blood (referred as hypercapnia) is known to cause CBF increase. Such hemodynamic changes called cerebral vascular reactivity (CVR) can be measured with arterial spin labeling (ASL) MRI [2]. The objective of this study was to investigate whether there is CVR impairment in MS patients and whether this correlates with lesion load and brain volume change.

MATERIALS AND METHODS: Twenty-one patients with clinically definite relapsing-remitting MS (mean age: 45.86 ± 13.26 years; average EDSS of 2.47) and 20 demographically similar healthy volunteers (mean age: 39.46 ± 4.37 years) were recruited. MRI imaging was performed on a 3T whole-body MR scanner (Siemens Magnetom Tim Trio; Siemens Healthcare, Erlangen, Germany) using a 12-channel head coil. The quantitative CBF (ml/min/100g) maps were obtained during both room air and hypercapnia (mixed 5%CO2, 21%O2, and 74%N2) exposure conditions with a standard pseudo-continuous ASL (pCASL) sequence [3]. The imaging parameters of pCASL include TR/TE = 3950/17ms, 52 repetitions, F0V=22cm, in-plane matrix =64x64, slice thickness=5mm, postlabeling delay=1230ms, and label location= 89mm below AC-PC line; with 24 slices were collected parallel to the AC-PC line and positioned to cover the entire cerebrum. The balanced labeling method was implemented with mean Gz of 0.6 mT/m and 82 RF blocks (RF GAP=360 μs) for a total labeling duration of 1.47 seconds. The end-tidal CO2 (EtCO2) of each subject was monitored with a capnograph device; and the second pCASL with CO2 challenge started after the increased EtCO2 reached an equilibrium. EtCO2 was recorded continuously during the scan and was used as a normalization function in the analysis. The CVR was calculated as percentage change in CBF comparing CO2 inhalation to room-air breathing normalized by changes of EtCO2 (AEtCO2) (mmHg). Segmented whole brain grey matter (GM), white matter (WM), and brain parenchymal (global) CVR were quantified. In addition, global cerebral metabolic rate of oxygen (CMRO2), phase-contrast (PC) based CBF and routine T1-, T2-based lesion detection imaging were implemented and analyzed with in-house software [4]. Five hemodynamic imaging features (baseline CBF, hypercapnia CBF, CVR, CMRO2 and PC-CBF) were used to classify MS patients from controls.

RESULTS: At baseline there was significant correlation (r=0.55, P=0.0002) between the CBF measured with ASL and CBF with phase-contrast. And there were significant increases of CBF with CO2 challenge in both groups; and the percentage change of CBF at hypercapnia compared to room air was correlated significantly with the EtCO2 pressure in control group. The CVR was calculated continuously during the scan and was used as a normalization function in the analysis. The CVR showed a significantly reduction (40%) in MS patients compared to controls. The CBF map and CVR changes with different types of lesions were demonstrated in Figure 1. As expected as a loss of vasoreactivity, the average CVR of WM lesions from all patients is 0.03%/mmHg, close to zero. The combination of CBF measured with ASL and hypercapnia CBF at room air but a largely increased CBF at hypercapnia condition for this patient showed increases and decreases of CBF in both cortical gray matter and certain white matter regions. The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well). The arrows showed the lesion with low CBF (18 mL/100g/min) at baseline and no changes of CBF at the CO2 condition (zero CVR for the iso-intense lesion as well).

CONCLUSIONS: We had shown a large decrease of global CVR in MS and a loss of vasoreactivity in most lesions; as well as a tight correlation between GM CVR and lesion load. This suggests that the impaired cerebrovascular response at hypercapnia condition reflecting hemodynamic deficits could be measured with ASL; and this process is related to WM lesion volume (inflammation) in MS patients.