PRELIMINARY EXPERIENCE WITH VISUALIZATION OF SUSCEPTIBILITY SIGNAL PATTERNS TO DIFFERENTIATE INTRACRANIAL HEMANGIOPERICYTOMAS AND MENINGIOMAS BY T2* WEIGHTED ANGIOGRAPHY IMAGING

haiyan lou1, Rui Zhang1, Jingfeng Zhang1, Qidong Wang1, Ying Tong1, Shunliang Xu1, and He Wang1

1Radiology Department, Medical School of Zhejiang University, hangzhou, Zhejiang, China, 2Neurosurgery Department, Medical School of Zhejiang University, hangzhou, Zhejiang, China, 3MR research China,GE healthcare, Shanghai, Shanghai, China

Introduction: Intracranial hemangiopericytomas represent a rare type of brain tumor that are typically difficult to distinguish from meningiomas based on clinical presentation and contrast enhancement findings but require different treatment. Susceptibility weighted imaging allows for noninvasive visualization of small veins in the human brain at submillimeter resolution and, therefore, is used to depict venous architecture in normal, as well as pathologic, tissue. The aim of this study was to assess the potential of T2 star weighted angiography (SWAN) in discriminating among intracranial hemangiopericytomas, hemangioblastomas and meningiomas based on the intratumoral susceptibility effects and peritumoral vein distention.

Materials and Methods: 19 patients with histologically verified intracranial tumor, including 7 cases of hemangiopericytomas, 2 cases of cerebellar hemangioblastoma and 10 cases of meningiomas(2 cases of angiomatous meningiomas, 3 cases of fibrous meningioma and 3 cases of transitional meningiomas, 2 cases of atypical meningiomas) were recruited for this study with a mean age of 42 years ranging from 38-65 years. All patients were selected and acquired to preoperatively undergo SWAN scanning in addition to CT and conventional MR imaging sequences. SWAN parameters were: flip angle=20°, TR=55.9ms, TE=5.2/11.7/18.2/24.6/31.1/37.5/44.0/50.5ms, FOV=18×18cm, matrix=320×256, slice thickness=1.4mm. We evaluated different signals patterns of hemangiopericytomas, meningiomas and hemangioblastoma with the flowing sequences: contrast enhanced T1weighted images, SWAN images correlated with pathologic HE staining and immunohistochemical index-CD34 among three kinds of tumor. Also CT scan was performed to determine calcification.

Discussion: Hemangiopericytomas could be clearly distinguished from most meningiomas by SWAN based on the intratumoral susceptibility effects, SWAN may be a promising tool for the noninvasive differentiation origin of entity hypervascular tumor of vascular or meningeal specifically.

Reference:

Results: three kinds of tumor had the same prominent substantive significant enhancement (19/19). According to the SWAN images, seven cases of hemangiopericytomas showed complex and variable venous patterns in vascular distributions of tumor parenchyma and peritumoral vein distention. 2 cases of hemangioblastoma had similar performance with hemangiopericytomas in SWAN images. Whereas 8 cases of meningiomas did not show increased microvascularity except two cases of hemangiomatous meningioma. 11 cases of intratumoral susceptibility effects were correlated with intratumoral vascular proliferations determined by histopathology.