Detection and Quantification of 2-Hydroxyglutarate in Gliomas with IDH Gene Mutation Using High Resolution 900MHz 1H-NMR Spectroscopy

Hyeon-Man Baek1, Yun-Ju Lee1, Eun-Hee Kim1, Chaejoon Cheong2, and Seung-Ho Yang2

1Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, Korea, 2Neurosurgery St. Vincent’s Hospital, Catholic University, Suwon, Gyeonggi-do, Korea

Introduction

Clinically, the presence of an IDH1 or IDH2 mutation has been shown to be associated with a better survival [1]. Several studies have shown that the elevated 2-hydroxyglutarate (2HG) can be used as a novel biomarker of IDH1/2 mutation status in glioma [2, 3]. Thus, the ability to detect and quantify the increased 2HG levels by using magnetic resonance techniques could have significant implications on patient care. The aim of this study was twofold, firstly to demonstrate the feasibility of in vitro high resolution 900MHz Cryo NMR spectroscopy for quantifying the 2HG concentrations in glioma samples with IDH1/2 mutation, and secondly to compare the range measured with the current method with previously published results.

Methods

Tissue samples from 20 patients with gliomas were examined: 7 IDH1/2 mutant and 13 wild type tumors. The samples ranged from 80 to 950 (mean ± SD, 382 ± 310) mg wet weight. Perchloric acid extracts of the tissues were redissolved in 0.28 mL of deuterium oxide. High resolution in vitro 1H-NMR spectroscopy was performed on a Bruker 900MHz spectrometer (Avance II 900) using 5 mm NMR probe. The spectral parameters were as follows: 90° pulse angle, 1178 Hz sweep width, 32K complex data points, relaxation delay 0.05s, acquisition time 2.8s, 64 transients, and total acquisition time of ~4 min. The absolute metabolite concentrations were calculated using equation: \[[C] = \frac{(N_{TSP}/N_{i}) \times (S_{TSP}/S_{i}) \times M_{i} \times V_{sample}}{M_{sample}} \] where \([C]\), and \([C]_{TSP}\) are the concentration of the metabolite and 3-(Trimethylsilyl)propionic acid (TSP) (μmol/g), \(S_{i}\) is the amplitude of the metabolite and \(S_{TSP}\) is the signal amplitude of TSP, \(V_{sample}\) is sample volume and \(M_{sample}\) is the weight of the sample. The terms \(N_{i}\) and \(N_{TSP}\) represent the number of 1H nuclei contributing to the resonance of metabolites \(i\) (2HG, Glu, Gln, GABA, etc.) and TSP.

Results

Five multiplets of relative intensities1:1:1:1:1 were observed (Figure 1). Figure 2 demonstrates representative high resolution one-dimensional 1H-NMR spectra of glioma samples with IDH1 mutated (top) and wild type (bottom) tumors. 2HG signal was detected in the IDH mutated tumors but not wild type tumors. On the 900MHz 1H-NMR spectra, the five protons of 2HG gave five resonance multiplets, like house-made 2HG solution experiment (Figure 1). The 2HG resonances at 2.00 and 2.29 ppm were partially overlapped with those of GABA, Glu, and NAA. In this study 2HG (\(^{1}CH_{2}\) at 2.24 and 2.29 ppm, \(^{2}CH_{2}\) at 1.84 and 2.00 ppm, and \(^{3}CH_{2}\) at 4.02 ppm) were measured by fitting a Voigt (Gauss and Lorentz) function. 1H-NMR result was positive for 2HG in all tumors that contained IDH1/2 mutation but negative in all tumors with wild type (e.g., 100% accuracy). The measured 2HG levels ranged from 0.29 to 5.79 (mean ± SD, 2.64 ± 1.94) μmol/g (Figure 3).

Discussion

The detection and quantification of 2HG in IDH1/2 mutated tumors is great interest because the elevated 2HG level has been linked to IDH1/2 gene mutation in glioma [2, 3]. This study represents, to our knowledge, the first in vitro measurements of absolute quantification of 2HG levels in IDH1/2 mutated tumors using high resolution 900MHz NMR spectroscopy. The levels of 2HG in this work had a range of 0.29 – 5.79 μmol/g from seven glioma samples with IDH1/2 mutation (4 WHO grade II and 3 WHO grade III), which is consistent with the finding of previous in vitro 600MHz NMR study (e.g., 0.55 – 3.51 μmol/g, Baek et al. [4]). In addition, other metabolite levels (e.g., Glu, GABA, NAA, Tau, Lac, PC, etc.) were found to be lower in IDH1/2 mutated tumors compared to IDH1/2 wild type tumors. This result reflects that IDH1/2 mutations make metabolic alterations in gliomas with IDH mutants. In particular, Glu may be become deplet with IDH1/2 mutation and then to 2HG. Recent findings from Dang et al. [2] suggest that IDH1-R132 expression results in elevated flux from Gln to 2HG through Glu and α-ketoglutarate. Gln-to-Glu conversion could be a metabolic bottleneck for IDH mutated tumors [5].

References

Acknowledgement: This work was supported in part by KBSI-#K32402 and - #T3222G