Effects of phosphatidylcholine-specific phospholipase C inhibition on tumour growth, metabolism, and HER2 expression in preclinical models of HER-2 overexpressing ovarian cancer

Rossella Canese1, Alessandro Ricci1, Maria Elena Pisanu1, Luisa Paris1, Luisa Altabella2, Emiliano Surrientino2, Marina Bagnoli2, Ludmila Lilic2, Anna Granata2, Silvana Caneveri1, Delia Mezzannica1, Egido Iorio1, and Franca Podo1
1Istituto Superiore di Sanità, Rome, RM, Italy, 2Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, MI, Italy

Introduction - The discovery of an abnormal choline metabolism as a hallmark of cancer warrants investigations on the role of the activities of phosphatidylcholine (PtdCho) cycle enzymes as potential molecular indicators of tumor response and new targets for anticancer treatment [1,2]. The altered choline profiles detected by high resolution MRS in human epithelial ovarian cancer (EOC) cell lines compared with nontumoral counterparts were associated with 12-25x increase in choline kinase (ChoK) activity and 5-17x activation of phosphatidylcholine-specific phospholipase C (PtdCho-PLC) [3]. We focused our attention on biological and metabolic effects of in vivo passage on the human HER2-overexpressing SKOV3 cell line, which allowed selection of cells (SKOV3.ip) endowed with a more aggressive phenotype, enhanced HER2 expression and higher PtdCho-PLC activity [4]. These features were associated with a higher phosphocholine (PCho) level in SKOV3.ip cells compared with the parental cell line [4; Pisanu et al, manuscript in preparation]. Purpose of this work was to investigate the role of PtdCho-PLC inhibition as a possible new approach to target in vivo tumorigenicity of HER2-overexpressing EOC cells, using as a model xenografts of SKOV3.ip cells in immunodeficient mice.

Methods - Cells: SKOV3.ip cells were established from the in vivo passage HER2-overexpressing SKOV3 cell line, as described in ref. 4. High resolution MRS analyses were performed on cell and tissue extracts at 16.4 or 9.4 T (Bruker AVANCE). Xenografts derived from s.c. implantation of in vitro cultured SKOV3.ip cells (1x 10^6) in the dorsum of SCID mice were treated daily with the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609, 1 mg/mouse x 9 days) or saline (SAL), starting from day 7 post injection (dpi)) and their growth was monitored twice a week by caliper.

In vivo MRI/MRS measurements were performed on a Varian Inova system, operating at 4.7 T. MRI/MRS and a combination of volume a

Discussion and Conclusions - We here report the first evidence of a binding of PtdCho-PLC to HER2 in ovarian cancer cells. Moreover, the PtdCho-PLC activation status could play a role in controlling HER2 overexpression in SKOV3.ip cells. The here reported decreases in the in vitro cell proliferation and in the in vivo tumour growth following PtdCho-PLC inhibition suggest that this enzyme plays an important role in HER2-driven EOC cell signalling and tumorigenicity.

Acknowledgement Partial support by Associazione Italiana per la Ricerca sul Cancro (AIRC) 2007-2010, Oncology Program OncOnd 37/07/H, ISS/70CF/4 and Special Program Alleanza contro il Cancro 2006, ACC3-AC5/D, Ministry of Health, Italy (Pi: Franca Podo) and Accordo di Collaborazione Italia-USA. We thank Massimo Giannini for high-quality maintenance of NMR equipment.

References:

<table>
<thead>
<tr>
<th></th>
<th>tCho (mM)</th>
<th>T2 (ms)</th>
<th>ADC (mm^2/s)</th>
<th>Ki67(%)</th>
<th>HER2 (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALINE (n=6)</td>
<td>4.2 ± 1.4</td>
<td>66 ± 15</td>
<td>8 ± 0.9</td>
<td>80 ± 10</td>
<td>strong</td>
</tr>
<tr>
<td>D609 (n=3)</td>
<td>b. d.</td>
<td>111 ± 17</td>
<td>12.8 ± 1.0</td>
<td>60 ± 26</td>
<td>moderate</td>
</tr>
</tbody>
</table>

b.d., below detection.

**p<0.05
***p<0.01

Discussion and Conclusions - We here report the first evidence of a binding of PtdCho-PLC to HER2 in ovarian cancer cells. Moreover, the PtdCho-PLC activation status could play a role in controlling HER2 overexpression in SKOV3.ip cells. The here reported decreases in the in vitro cell proliferation and in the in vivo tumour growth following PtdCho-PLC inhibition suggest that this enzyme plays an important role in HER2-driven EOC cell signalling and tumorigenicity.

Acknowledgement Partial support by Associazione Italiana per la Ricerca sul Cancro (AIRC) 2007-2010, Oncology Program OncOnd 37/07/H, ISS/70CF/4 and Special Program Alleanza contro il Cancro 2006, ACC3-AC5/D, Ministry of Health, Italy (Pi: Franca Podo) and Accordo di Collaborazione Italia-USA. We thank Massimo Giannini for high-quality maintenance of NMR equipment.

References: