Imaging of dual 19F tracer gases for measurement of lung ventilation properties

Peter E Thelwall1,2, Christopher R Fox3, Hannah Walden1, and Andrew Fisher1

1Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom, 2Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom, 3Biomedical and Biomolecular Research Centre, Northumbria University, Newcastle upon Tyne, United Kingdom

Target Audience: Research scientists and clinicians with an interest in pulmonary MRI and hyperpolarized/19F gas imaging.

Purpose: MRI of tracer gases is used to make measurements of lung structure and function, capable of demonstrating progression of pulmonary diseases or effects of therapeutic strategies. The majority of pulmonary gas MRI studies have employed hyperpolarized noble gases (3He, 129Xe, 83Kr). Studies have shown that gas imaging is possible with thermally polarised 19F-containing inert gases, such as SF$_{6}$ and fluorocarbons (1,2). Such an approach has the disadvantage of lower SNR than hyperpolarised gas imaging. However, the 19F approach does not suffer from loss of polarisation during the experiment, and the short 19F T$_{1}$ (1-30 ms) allows a high degree of signal averaging. The presence of multiple equivalent 19F nuclear per molecule further aids SNR, as does use of a high B$_{0}$ field. In combination, these factors provide a viable gas imaging method, and both preclinical and human application of 19F gas imaging has been demonstrated (1,2).

We performed gas tracer wash-out / wash-in studies in lung phantoms and ex vivo rat lungs. We hypothesised that the displacement of one 19F-containing gas by another could be monitored by MR spectroscopy to measure ventilation properties. In addition we hypothesised that for imaging applications the large 19F chemical shift between SF$_{6}$ and C$_{2}$F$_{6}$ would result in a chemical shift artefact of sufficient size to completely spatially separate the components of a gas mixture in 19F images (controlled by careful choice of image field of view and receiver bandwidth), facilitating imaging of regional ventilation efficacy and measurement of differences in regional compliance.

Methods: Ventilation and gas-displacement experiments were performed on excised rat lungs and on a lung phantom. The phantom was constructed from a ~3.5 mL balloon that was filled with foam sponge. Ventilation gases were SF$_{6}$ and C$_{2}$F$_{6}$. A ventilation chamber was constructed from a 50 mL centrifuge tube, with chamber pressure pneumatically controlled via a syringe. MR data were acquired using a Varian 7T magnet and spectrometer. A 25 mm diameter Helmholtz RF coil was constructed around the ventilation chamber and tuned to the 19F resonant frequency (282 MHz). 19F spectra employed a pulse-acquire sequence (tip = 90°, TR = 15 ms, SW = 50 kHz, NEX = 10 averages) with a time resolution of 150 ms in dynamic studies. Images were acquired using a gradient echo sequence (TR = 5ms, TE = 1.6ms, NEX = 20) with an acquisition bandwidth of 78 kHz, close to double the chemical shift difference between the SF$_{6}$ and C$_{2}$F$_{6}$ resonances. The scan duration was 6.4sec.

Results: Figure 1 shows an excised lung in the ventilation chamber / 19F coil. A 19F spectrum from a mixture of SF$_{6}$ and C$_{2}$F$_{6}$ is shown in Figure 2. Fig 3 shows the change in peak intensity during a SF$_{6}$ wash-out / C$_{2}$F$_{6}$ wash-in experiment. SF$_{6}$ signal (green) decreases as C$_{2}$F$_{6}$ signal increases (blue). The variation in total lung gas content (red) is calculated from the sum of SF$_{6}$ and C$_{2}$F$_{6}$ components. Thus simultaneous measurement of lung volume, ventilation dead volume and ratio of wash-in : wash-out gas can performed dynamically during respiration. Figure 4 shows a 19F images from a C$_{2}$F$_{6}$ wash-out / SF$_{6}$ wash-in experiment, showing chemical shift separation of SF$_{6}$ and C$_{2}$F$_{6}$ components in the image.

Discussion and Conclusions: We have demonstrated that 19F-containing tracer gases detected by 19F MR spectroscopy can be used to determine change in tracer mixture ratio and content over time. In addition, the chemical shift difference between gas resonances can be exploited to spatially separate gas mixture components in 19F images. This approach is technically similar to hyperpolarised xenon studies that exploit the chemical shift difference between gaseous and dissolved 129Xe for simultaneous yet independent imaging of these two components (3), though our approach provides different information on pulmonary properties. Our methods provide tools to monitor ventilation efficacy, and thus report on lung functional properties that change in disease, with potential for non-invasive preclinical investigation of pulmonary function.

Acknowledgements: Thanks to Lidija Siljor (Newcastle University) for donation of SF$_{6}$ gas.