Quantitative 23Na MRI of human knee cartilage using dual-tuned 1H/23Na transceiver array RF coil at 7T

Chan Hong Moon, Jung-Hwan Kim, Tiejun Zhao, and Kyongtac Ty Bae

1Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States, 2MR R&D Collaborations, Siemens Healthcare, Pittsburgh, Pennsylvania, United States

[Introduction] 1H MRI provides morphological information about soft tissues, while 23Na MRI adds biochemical information. One of the major potential clinical applications of 23Na MRI is a degenerative knee disease associated with osteoarthritis (OA). High field MR (e.g., 7T) can potentially provide higher 23Na sensitivity, particularly combining with multi-array RF coil technology, thereby pixel resolution can be increased [1,2]. However, in order to acquire accurate quantitative 23Na concentration ($[^{23}$Na]) of thin knee cartilage of ~2.3 mm, B1 RF inhomogeneity [3] and partial volume effect (PVE) should be corrected. In this study, we developed a dual-tuned (DT) 1H/23Na knee coil at 7T with high 23Na signal sensitivity. 23Na B1 field characteristics of the transceiver array 23Na coil were investigated and the inhomogeneity was corrected. In addition, point spread function (PDF) of 23Na image was measured and considered in the PVE correction.

[Methods and materials] All scans were performed using a 7T human scanner (Siemens Medical Solutions, Germany). Seven normal subjects participated in this Institutional Review Board approved study. 23Na-only birdcage and multi-array DT RF coils were used (Fig. 1) and those 23Na imaging SNR were compared. High-resolution 1H knee images were acquired using a 3D fast double echo and steady state (DESS) sequence (flip angle = 25°, TR/TE = 15/5 ms, resolution = 0.57 mm3). Without repositioning the subject, 23Na MRI was performed using 3D ultra-short-echo-time spiral sequence (TR/TE = 100/0.27 ms, isotropic resolution = 1.7 - 5 mm3) [4]. 23Na MR data from all the channels were averaged by vector summation to reconstruct 23Na (magnitude) image. A series of 23Na images at >5 mm3 (with all Rx channels on) were acquired with varying RF flip angles centered on 90° – average (vector summed) transmission (Tx) and reception (Rx) field (magnitude) maps were estimated by the sinuosoidal curve fitting [3]. PSF of 23Na images was measured from the image intensity profile across boundary of a reference cylindrical marker (15-mm diameter) in the radial direction and averaged over the 2π perimeter. 23Na signal decrease due to PVE, relaxation, and applied filtering was simulated in one dimension with different imaging resolution and cartilage thickness – simulation results were applied in quantification in $[^{23}$Na] considering PDF and cartilage thickness. SNR, cartilage thickness, and $[^{23}$Na] were measured in the anterior femoral cartilage (Figs. 3A, B). Acceptable SNR criterion was set to 20.

[Results and conclusions] 23Na image SNR acquired with birdcage coil at 2-mm resolution was below 20 (Fig. 2B). By using the multi-channel transceiver array coil, SNR was higher than 20 at 2 mm, but was lower than 20 at 1.7-mm resolution (Fig. 2D). Mean SNR of 23Na image at 2-mm resolution was measured as 26.80 ± 3.69 (n = 7) in the anterior femoral cartilage using the transceiver array coil. Full-width-half-maximum was measured as 5.2 mm with 2-mm pixel resolution from the PSF of 23Na image. From the PVE simulation result, the signal decay was linearly changed with the cartilage thickness; signal 0.12 thickness + 0.03. The cartilage thickness was measured in each subject, and PVE was corrected using the equation – mean thickness = 3.53 ± 0.95 mm (n = 7) and mean $[^{23}$Na] before and after PVE correction was 86.28 ± 35.90 mM (n = 7) and 288.13 ± 29.50 mM (n = 7) (Fig. 3B). Variation of thickness and $[^{23}$Na] within the cartilage was calculated as the ratio of standard deviation and the mean. Both thickness and $[^{23}$Na] values before PVE correction were varied in similar order across the subjects, but $[^{23}$Na] variation after PVE correction decreased at statistical significance (P < 0.002, n = 7) (Fig. 3C) – mean thickness variation, 25.12 ± 5.37% (n = 7) and mean $[^{23}$Na] variation before and after PVE correction, 20.29 ± 6.92% (n = 7) and 14.94 ± 5.05% (n = 7). In order to evaluate the proposed $[^{23}$Na] quantification and to systematically investigate PVE artifacts in knee cartilage, ex vivo 23Na MRI of knee cartilage specimen at a sub-millimeter resolution (i.e., << cartilage thickness) is worthwhile.

In conclusion, the developed transceiver-array 23Na RF coil is more sensitive than the birdcage volume coil. 23Na in knee cartilage can be accurately quantified after correction of B1 inhomogeneity and PVE with the morphological information acquired by 1H MRI under DT coil setup. The developed DT 1H/23Na MRI technique can improve our understanding of biochemical changes in articular cartilage of knee OA patients.

[Acknowledgement] Supported by RSNA Research Scholar grant RSCH1025.