The choice of arterial input function in perfusion-weighted MR imaging - size matters in terms of saturation-like effects

Peter Brunecker1, Ann-Christin Ostwald1, Irana Galinovic1, Jochen B. Fiebach1, and Martin Ebinger1,2

1Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, - Germany, 2Klinik und Poliklinik Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, - Germany

Introduction Dynamic susceptibility-contrast (DSC)-MRI is the most widely used method for perfusion imaging (PI) in brain e.g. to visualize the hypoperfused tissue in stroke1. For that purpose dynamic T2*-weighted imaging is performed after administration of a bolus of a contrast agent (CA). Perfusion parameter maps can then be calculated depending on the arterial input function (AIF) which is usually extracted from a voxel showing an early and steep dynamic contrast change. Finally, for each voxel cerebral blood flow and volume can be estimated by deconvolution making the results independent from the individual bolus shape. However, the indicator-dilution theory behind this assumes at least the availability of the relative CA concentration which can be principally estimated from T2*-contrast. Theoretical considerations about the relationship between signal change and tracer concentration refer to a network of capillaries. They do not necessarily apply to an individual large vessel which is targeted while estimating the AIF. Attempts were made to also describe the latter case utilizing a simplified (cylindrical) model for the artery, especially for describing partial volume effects (PVE)2. In clinical research, however, extracting the AIF directly from imaging data is still the method of choice. The objective of the present study is to examine the impact of this technique on the accuracy of DSC-MRI. Especially, the influence of the chosen arterial segment on the observed peak signal and the level of linearity in comparison to the microvascular signal are investigated.

Methods As a sub-trial of the 1000Plus study (clinicaltrials.gov - NCT00715533) 246 patients with suspected stroke and at least one PI scan within 24 hours from symptom onset were screened. 35 patients had to be excluded for several reasons. The remaining 211 patients (93 female) had a median age of 68 years (interquartile range (IQR) 58 to 78). PI was performed on a 3 T MRI scanner (TRIO TIM; Siemens AG, Germany) using a gradient echo single-shot echo-planar imaging (GE-EPI) sequence (TE = 29 ms; TR = 1390 ms; matrix size = 128 x 128; field-of-view = 230 mm; slice thickness = 5 mm). For perfusion measurements a dosage between 4 and 5 mL 1 M Gadobutrol (> 100 kg: 6 mL; < 50 kg: 4 mL) was injected at a rate of 5 mL/s using a power injector, followed by 20 mL saline flush. In every patient and for each of the three segments (M1, M2, and M3) of the middle cerebral artery (MCA) three AIFs were chosen contralaterally to the suspected ischemia3. Besides auxiliary, quality-related parameters like signal-to-noise ratio (SNR) the relative peak signal drop (ΔS(t) = 1 – S(t)/S0) and concentration (c(t) = -log(S(t)/S0)) were estimated.

Results The median dosage of contrast agent was 0.059 mmol/kg BW (IQR 0.051 to 0.067). The mean relative peak concentration from the whole slice at M2 (which serves as a reference level) exhibited a strong linear relationship to another level (at M3), which was expressed by a high correlation coefficient (Spearman’s ρ = .967; p <0.01) (Fig 1A). The level of the linearity of this reference slice – dominated by a microvascular signal – and the AIFs was still fair for M3 and M2, although the scatter plot is widened for higher peak concentrations (r = .547 / .555, respectively, p < 0.05, Fig 1B-C). For AIFs from M1 segments the correlation was no longer significant (r = -.114, n.s., Fig 1D). Similar findings were made investigating the relative peak signal drop (Fig 2). Summarizing, a decoupling between arterial and microvascular signal drop has been observed. This effect has risen with the diameter of the targeted artery.

Discussion The mean signal drop in two different whole slice data acquired in the same examination correlated strongly (Fig 1A; 2A). In whole slice data most voxels are dominated by the microvascular compartment. Even over many voxels and thereby representing a mixture from different tissue types this high level of linearity was to be expected. For signal drops from the arteries, correlation to the microvascular reference was degrading with increasing diameter of the vessel from which the AIF was derived (Fig 1B–D; 2B–D). In particular, for AIFs derived from M1 branches the correlation was no longer significant (Fig 1D; 2D). The correlation dropped that even for low concentrations of Gadobutrol as used in our study (<0.1 mmol/kg BW) saturation-like effects can be observed, at least in larger arteries. The given dosage range especially excludes overdosage as an explanation. Probably the observed behavior is due to the strong and long-ranging dephasing patterns around these vessels in 3 T MRI, consequently leading to PVE and signal nulling in their vicinity. This obvious decoupling of AIF and tissue signal drop might render quantification of perfusion parameters problematic. It means in effect that an important precondition for the application of the indicator-dilution theory is no longer valid. This also sounds a note of caution to alternative post-processing strategies such as local AIFs. Given the limited representation of AIFs for tracer concentrations, efforts to improve AIF definitions with a customized sequence seem warranted4. In case only standard imaging techniques are available, we recommend the usage of more distal arterial branches.

References