The purpose of this study was to investigate the feasibility of using FSD-MRA for evaluating hands of patients with known SLE vasculopathy.

Methods: Six patients (5 F, 1 M) meeting American College of Rheumatology classification criteria for SLE with hand symptoms ranging from 3 mos to 13 yrs were prospectively recruited. Bilateral hand imaging was performed using an oblique coronal acquisition. NC FSD-MRA preceded a high-resolution CE-MRA scan (0.15 mmol/kg bodyweight Multihance injected at 2 ml/s, 2 consecutive 18.5-sec-long post-injection measurements, TWIST for bolus timing with 0.05 mmol/kg contrast) at 1.5T (Avanto, Siemens). The optimal FSD strength or first-order gradient moment (m1) was determined through an m0-scan. All MRA scans used two body matrix coils with the hands sandwiched between them. Spatial resolution = 0.94x0.94x0.94 mm³ (FSD-MRA), 1.3x1.3x0.9 mm³ (TWIST), and 0.82x0.82x0.82 mm³ (CE-MRA). Two radiologists reviewed MRA images in consensus for venous contamination, motion artifacts on palmar and digital stations as well as segment conspicuity and stenosis in 18 segments. Soft tissue hyperemia (CE-MRA) and depiction of 3rd terminal digits (FSD-MRA) were recorded. Patient (subjective) and physician (objective) questionnaires were utilized to document perceived digital involvement and physical findings and for comparison to MRA findings.

Results: FSD-MRA was superior to both contrast techniques in visualizing arterial segments in all regions (Table 1). No proof indicated that FSD-MRA is more susceptible to venous contamination or motion artifacts. The 3rd terminal digital arteries were better depicted by FSD-MRA (13 segments at index, 14 at middle, 14 at ring, 10 at little) compared with TWIST (2, 3, 3) and CE-MRA (8, 5, 6). The vascular pathology in these SLE subjects predominantly affected the digital vasculature with sparing of palmar vessels and in relatively symmetric pattern. Hyperemia on contrast administration correlated with clinical manifestations. Soft tissue changes and edema of digits were limited in visualization on FSD-MRA. It was observed that palmar and digital arteries were barely enhanced on CE-MRA and TWIST in some cases (Fig. 1), potentially resulting in overestimation of the disease severity. This suggests limited passage of gadolinium into tiny vessels. Venous contamination significantly impaired visualization of digital vessels on CE-MRA (Fig. 2).

Discussion: FSD-MRA is a promising technique for diagnosing hand vasculopathy in SLE patients with superior image quality allowing for more confident diagnoses than CE MRA. NC FSD also has advantage in SLE patients who often have renal insufficiency. Hyperemia, which can provide additional information, is limited with NC technique but dedicated T2 FS may be added to gain similar information. Clinical findings did not completely correlate with extent of vascular involvement, suggesting other confounding factors for patient symptomatology. This is an ongoing study with increasing subjects and our preliminary data show this technique warrants further exploration.


Comparison of noncontrast FSD MRA to time resolved (TWIST) and high resolution contrast enhanced MRA of the hands in patients with systemic lupus erythematosus (SLE) and clinical vasculopathy.

The purpose of this study was to investigate the feasibility of using FSD-MRA for evaluating hands of patients with known SLE vasculopathy.

Introduction: Systemic Lupus Erythematosus (SLE) is a multisystem autoimmune disorder with a wide range of clinical presentations, including digital vasculitis. These vasculitis lesions typically affect the hands, leading to pain, ischemia, erythema, and dermal ulceration. The gold standard for imaging is digital subtraction angiography (DSA), which is invasive and has inherent complications. A promising technique but has its limitations in evaluating the hand vasculature due to small caliber vessels, and short arteriovenous transit time. Gadolinium contrast may also be a limiting factor in patients with decreased renal function secondary to lupus nephritis and associated risk of nephrogenic systemic fibrosis. Noncontrast (NC) MRA with Flow-Sensitive Dephasing (FSD) has shown promise in the evaluation of hand vasculature.

Methods: Six patients (5 F, 1 M) meeting American College of Rheumatology classification criteria for SLE with hand symptoms ranging from 3 mos to 13 yrs were prospectively recruited. Bilateral hand imaging was performed using an oblique coronal acquisition. NC FSD-MRA preceded a high-resolution CE-MRA scan (0.15 mmol/kg bodyweight Multihance injected at 2 ml/s, 2 consecutive 18.5-sec-long post-injection measurements, TWIST for bolus timing with 0.05 mmol/kg contrast) at 1.5T (Avanto, Siemens). The optimal FSD strength or first-order gradient moment (m1) was determined through an m0-scan. All MRA scans used two body matrix coils with the hands sandwiched between them. Spatial resolution = 0.94x0.94x0.94 mm³ (FSD-MRA), 1.3x1.3x0.9 mm³ (TWIST), and 0.82x0.82x0.82 mm³ (CE-MRA). Two radiologists reviewed MRA images in consensus for venous contamination, motion artifacts on palmar and digital stations as well as segment conspicuity and stenosis in 18 segments. Soft tissue hyperemia (CE-MRA) and depiction of 3rd terminal digits (FSD-MRA) were recorded. Patient (subjective) and physician (objective) questionnaires were utilized to document perceived digital involvement and physical findings and for comparison to MRA findings.

Results: FSD-MRA was superior to both contrast techniques in visualizing arterial segments in all regions (Table 1). No proof indicated that FSD-MRA is more susceptible to venous contamination or motion artifacts. The 3rd terminal digital arteries were better depicted by FSD-MRA (13 segments at index, 14 at middle, 14 at ring, 10 at little) compared with TWIST (2, 3, 3) and CE-MRA (8, 5, 6). The vascular pathology in these SLE subjects predominantly affected the digital vasculature with sparing of palmar vessels and in relatively symmetric pattern. Hyperemia on contrast administration correlated with clinical manifestations. Soft tissue changes and edema of digits were limited in visualization on FSD-MRA. It was observed that palmar and digital arteries were barely enhanced on CE-MRA and TWIST in some cases (Fig. 1), potentially resulting in overestimation of the disease severity. This suggests limited passage of gadolinium into tiny vessels. Venous contamination significantly impaired visualization of digital vessels on CE-MRA (Fig. 2).

Discussion: FSD-MRA is a promising technique for diagnosing hand vasculopathy in SLE patients with superior image quality allowing for more confident diagnoses than CE MRA. NC FSD also has advantage in SLE patients who often have renal insufficiency. Hyperemia, which can provide additional information, is limited with NC technique but dedicated T2 FS may be added to gain similar information. Clinical findings did not completely correlate with extent of vascular involvement, suggesting other confounding factors for patient symptomatology. This is an ongoing study with increasing subjects and our preliminary data show this technique warrants further exploration.