Time-resolved In Vivo Cardiac Diffusion Tensor MRI of the Human Heart

Sonia Nielles-Vallespin, Pedro Ferreira, Peter Gatehouse, Jennifer Keegan, Ranil de Silva, Tevfik Ismail, Andrew Scott, Timothy G Reese, Choukri Meekaoui, Peter Speier, Thorsten Feiweier, David E Sosnovik, Andrew E Arai, and David Firmin

1 Royal Brompton Hospital, Imperial College, London, London, United Kingdom, 2 National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), DHHS, Bethesda, MD, United States, 3 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States, 4 Siemens AG Healthcare Sector, Erlangen, Germany

Introduction

Cardiomyocytes form tracts with a crossing helical architecture [1]. The sheer, extension, thickening and radial reorientation of this structure allows the myocardium to contract and relax and function as a pump. Cardiac Diffusion Tensor Imaging (cDTI) provides a non-invasive approach for the depiction of the myocardial fibre architecture [2-8]. In vivo cDTI remains extremely challenging due to cardiac and respiratory motion. Several techniques have been used to compensate for cardiac motion and cDTI data have been successfully acquired both at systole and diastole [3,6-9]. The purpose of this work was to perform time-resolved in vivo cDTI acquisitions of the healthy human heart over the whole cardiac cycle.

Materials and Methods

The diffusion weighted (DW) STEAM single shot EPI sequence was implemented on a clinical scanner (3T, MAGNETOM Skyra, Siemens AG, Germany) [8]. In order to minimize echo time (TE) and the length of the single shot EPI readout, zonal excitation and partial Fourier (PF) instead of parallel imaging were used. 5 volunteers were scanned. In each session, images were acquired in 7 different phases of the cardiac cycle. Protocol parameters: 6 diffusion encoding directions, $b=350s/mm^2$, TR=1100ms (for RR intervals=1000ms), TE=15ms, BW=2442Hz/pixel, fat saturation, PF 5/8, spatial resolution=$2.7\times2.7\times8mm^3$, 1 slice, 6 averages. Fractional anisotropy (FA), mean diffusivity (MD), helix angle (HA) and superquadric glyph maps [10-11] were created.

Results

Averaged b0 images, MD, FA and superquadric glyph maps over 7 different phases of the cardiac cycle are shown in Figures 1 and 2. The variation in orientation of the diffusion tensor over the cardiac cycle can be observed.

Discussion

The acquisition has been shortened as much as possible to be able to acquire images of the heart at any given point of the cardiac cycle. Nevertheless, since the diffusion encoding uses monopolar diffusion gradients, sensitive to material strains over the cardiac cycle might remain [6,12]. Future work will look into the influence of strain on this data and possible strain correction mechanisms. Quantification of FA, MD and HA changes over the cardiac cycle will follow once a larger number of volunteers has been scanned.

Conclusion

To the author’s knowledge, we present for the first time in vivo cardiac DTI images distributed over the entire cardiac cycle. The variation in orientation of the diffusion tensor over the cardiac cycle can be observed. The ability to map myocardial fiber structure and its dynamics, especially combined with myocardial strain imaging techniques, could provide novel insights into the structure-function relationships in the heart, and its changes in the presence of disease.

Bibliography