TRIPLE ECHO STEADY STATE (TESS) RELAXOMETRY
Rahel Heule1, Carl Ganter2, and Oliver Bieri1
1Department of Radiology, University of Basel Hospital, Basel, Switzerland, 2Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany

Target audience. Scientists and clinicians interested in fast T₂ and T₁ quantification methods.

Purpose. Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B₀) and transmit (B₁) field heterogeneities, and commonly biased by T₂/T₁. The purpose of this study is the development of a rapid, bias-free T₁ relaxometry method by using a triple echo steady state (TESS) sequence that allows to simultaneously quantify T₁ and T₂ within one single scan.

Methods. Similar to the double echo steady state approach for T₂ quantification (1), the dependencies of the SSFP signal modes on relaxation are used to quantify T₁ and T₂ using TESS. In addition to the lowest order SSFP-FID (F₀) and lowest order SSFP-echo (F₁) modes, a third mode is acquired, namely F₁, according to the sequence setup shown in Fig. 1. Analytical expressions for the modes can be found e.g. in (2),

\[F₀ = 1 - (E₁ - \cos \alpha) \cdot r \]
\[F₁ = (1 - (1 - E₁ \cos \alpha) \cdot r) \cdot E₁^2 \]
\[F₂ = q^{-1} \cdot (1 - (E₁ - \cos \alpha) \cdot r) \]

with definitions

\[E₁ := \exp(-TR/T₁) \cdot \cos \alpha \]
\[q = (1 - (1 - E₁ \cos \alpha) \cdot r) \cdot \cos \alpha \]
\[\alpha = \frac{\pi}{2} \cdot \sin^{-1} \left(\frac{1}{q} \right) \]

To calculate T₁ and T₂, the following signal ratios are investigated:

\[s₁(T₁) := \frac{F₁}{F₀} \]
\[s₂(T₁, T₂) := \frac{F₂}{F₀} \]

Using an initial global guess for T₁ and a golden section search algorithm, an estimate for T₂ is derived based on the s₂ signal ratio. This first guess for T₂ is in turn used to find an updated T₁ value based on s₁. The whole procedure is repeated until the change in both T₁ and T₂ falls below a certain threshold; typically, requiring less than 10 iterations. TESS offers T₁ and T₂ mapping from one scan and without the confounding influence of either T₀ or T₂ on T₁. Relaxometry based on TESS is optimized and evaluated from simulations, in vitro studies, and in vivo experiments.

Results. It is found that relaxometry with TESS is not biased by T₀/T₂, is insensitive to B₀ heterogeneities, and, surprisingly, for T₂ not affected by B₁ field errors (see Fig. 2). As a result, excellent correspondence between TESS and reference spin echo data is observed for T₁ in vitro at 1.5T and in vivo at 3T (see Fig. 3 and Table 1), allowing fast high-resolution T₁ imaging of the musculoskeletal system. For multi-contrast spin echo, a pronounced overestimation of about 30 – 40 % is observed for articular cartilage, muscle, and for the internal controls, due to stimulated echo contributions (i.e., imperfect refocusing pulses and thus due to B₁ errors).

Discussion. TESS relaxometry with TESS revealed to be independent of B₀, whereas T₁ quantification showed the expected pronounced B₀-related estimation errors. This extraordinary feature is not only of special interest for high to ultra-high field T₁ relaxometry, where prominent B₀ variations can be expected and applicability of spin echo techniques might be limited due to SAR constraints, but also provides accurate quantification results in combination with spectral-spatial excitation pulses that typically entail flip angle calibration errors in the presence of B₀ heterogeneities (Fig. 3).

Conclusion. TESS allows rapid, B₀ and B₁ insensitive, bias-free T₁ quantification within one single scan. As a result, the new proposed method is of high interest for fast and reliable T₁ mapping, especially for the musculoskeletal system at high to ultra-high fields.

Figure 1: Sequence diagram of a triple echo steady state (TESS) sequence. The center FID (F₀) is flanked by a higher order FID to the left (F₁) and by the lowest order Echo (F₂) to the right.

Figure 2: T₁ sensitivity of TESS (a) and T₀ (b) mapping based on TESS, illustrated exemplarily for a manganese-doped spherical probe (0.25 mM MnCl₂ in H₂O) at 1.5T with a nominal T₁ of 456 ms and a nominal T₂ of 48.5 ms, as derived by SE techniques. While TESS-T₁ values prove to be completely unaffected by a recalculation using only half of the nominal flip angle, here 20° instead of 40°, T₁ is considerably overestimated (1943 ms instead of 456 ms for the ROI indicated by the red circle).

Figure 3: T₂ maps calculated from axial images of the knee joint at 3T, either from TESS base images (F₁, F₂, and F₃, leftmost map), or by using SE-techniques. A single-echo SE approach (middle) is compared to a multi-contrast SE method (right). Manganese-doped test tubes serve as internal controls. For selected ROIs (yellow numbers), T₂ values are summarized in Table 1.

<table>
<thead>
<tr>
<th>tissue</th>
<th>TESS [ms]</th>
<th>SE [ms]</th>
<th>mc-SE [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cartilage (1)</td>
<td>27.3 ± 3.2</td>
<td>26.5 ± 3.2</td>
<td>40.4 ± 5.2</td>
</tr>
<tr>
<td>muscle (2)</td>
<td>26.3 ± 0.6</td>
<td>24.6 ± 1.1</td>
<td>37.6 ± 4.9</td>
</tr>
<tr>
<td>0.125 mM MnCl₂ (3)</td>
<td>64.2 ± 0.9</td>
<td>69.1 ± 0.6</td>
<td>102.6 ± 0.7</td>
</tr>
<tr>
<td>0.250 mM MnCl₂ (4)</td>
<td>34.9 ± 0.3</td>
<td>36.6 ± 0.1</td>
<td>53.0 ± 0.3</td>
</tr>
<tr>
<td>0.500 mM MnCl₂ (5)</td>
<td>18.0 ± 0.2</td>
<td>18.7 ± 0.1</td>
<td>28.9 ± 0.1</td>
</tr>
</tbody>
</table>

Table 1: In vivo comparison of spin echo and TESS T₂ relaxometry data in the knee joint at 3T for the ROIs indicated in Fig. 3 (numbers in brackets refer to the corresponding ROI). Reference SE-T₂ values are derived based on nine single-echo SE scans using a nonlinear least-squares fit with echo times of 10, 20, 30, ..., 90 ms (middle column) and on a multi-contrast SE scan (nine echoes: starting from 10 ms, and having an echo spacing of 10 ms, rightmost column).