Assessment of human tibial cartilage-bone interface in osteoarthritis using SWIFT

Jari Rautiainen1,2, Elli-Noora Salo1, Virpi Titu1, Mikko A.J. Finnilä1, Olli-Matti Ahonen1, Simo Saarakkala1, Petri Lehenkari3, Jutta Ellermann5, Mikko J. Nissi1,6, and Miika T. Nieminen1,6

1Department of Applied Physics, University of Eastern Finland, Kuopio, Finland, 2Department of Radiology, University of Oulu, Oulu, Finland, 3Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland, 4Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland, 5Department of Medical Technology, University of Oulu, Oulu, Finland, 6Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland, 7Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States, 8Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, United States

TARGET AUDIENCE
Osteoarthritis researchers focusing on cartilage and subchondral bone.

PURPOSE
The zone of calcified cartilage is a mineralized layer that separates the articular cartilage from the subchondral bone. The assessment of calcified cartilage and cartilage-bone interface, which have very short T2; relaxation times, has been difficult with conventional magnetic resonance imaging (MRI) techniques with echo times (TE) in the millisecond range, resulting in a loss of signal. SWEEP Imaging with Fourier Transform (SWIFT) is an MRI technique that uses interleaved RF excitation and signal acquisition allowing imaging of the shortest T2 species. The calcified cartilage may have a major role in the pathogenesis of osteoarthritis (OA) warranting its investigation at different stages of disease. The purpose of this study was to evaluate cartilage-bone interface in human tibial osteochondral samples with varying degrees of degeneration using SWIFT. For reference, micro-computed tomography (micro-CT) imaging and histological methods were used.

METHODS
Osteochondral samples (n = 13) of 6 mm in diameter from human tibial plateau were obtained from patients having total knee arthroplasty. The experiments were approved by the local ethics committee.

MRI was performed at 9.4 T (Oxford instruments Pct, Witney, UK) with a 19 mm quadrature RF volume transmitter (RAPID Biomedical GmbH, Rimpar, Germany) and Varian DirectDrive console (Varian Inc. Palo Alto, CA, USA). Prior to imaging, the specimens were thawed, placed inside a Teflon test tube and immersed in perfluoropolyether (Fomblin® LC08, Solyv Solexis, Milan, Italy). SWIFT imaging was performed with 96000 views, FOV 40 × 40 mm², BW = 62.5 kHz, 384 complex points, 104 µm isotropic resolution and a nominal flip angle of approximately 57°, separately optimized for each sample. Water saturated SWIFT images were obtained by applying a hyperbolic secant (HS4) inversion pulse of 1 kHz bandwidth centered at water frequency every 16 views. SWIFT images without saturation pulses were acquired using identical sequence timing. The scan time was approximately 30 minutes per one SWIFT dataset. The SWIFT images were reconstructed using a custom made LabVIEW software. For reference, micro-CT imaging (SkyScan 1172, Kontich, Belgium) of the samples were performed with 28 µm isotropic resolution and 0.5 mm aluminum filter. Micro-CT images were reconstructed using software provided by manufacturer. Finally, the samples were investigated using histological techniques. The histological sections were stained with Masson’s trichrome (collagen) and Safranin-O (proteoglycans) stains. Safranin-O stained sections were histologically graded by three observers according to the Osteoarthritis Research Society International (OARSI) grading system (scale 0-6, zero indicating normal healthy cartilage).

For evaluation purposes, 1-mm thick average slices were calculated from SWIFT datasets. Water saturated SWIFT images containing only signal from the long T2 spins of the medullar fat were subtracted from non-saturated images. The resulting subtraction images represent “fat-saturated” images containing only water signal from both long T2 and short T2 spins.

The thickness of the subchondral bone plate was measured from SWIFT and micro-CT images as an average value from 2 mm wide ROI in the middle of the sample. In SWIFT images it was assumed that the subchondral bone plate corresponds to the low-intensity region below the cartilage. Thicknesses were finally compared with Pearson’s correlation analysis.

RESULTS
The OARSI grades of the samples varied from 1.4 to 4.1 (average values). For healthy or mildly degenerated samples SWIFT consistently produced a high-intensity signal at the cartilage-bone interface (Figs. 1A&B, white arrows). Masson’s trichrome staining revealed the zone of calcified cartilage for healthy/early degenerated samples. For samples with low OARSI score, the subchondral bone appeared normal in the micro-CT images (Figs. 1A&B). The samples with advanced degeneration lacked the high-intensity signal band in SWIFT images at the osteochondral junction (Fig. 1C&D, black arrows). In Fig. 1C, histological section reveals very thin zone of the calcified cartilage. Furthermore, fibrocartilage was detected in the articular surface of the sample. Micro-CT images showed that the subchondral bone plate corresponds to the low-intensity region below the cartilage.

DISCUSSION
According to the present results SWIFT produces a high-intensity signal at cartilage-bone interface similar as demonstrated in ultrashort echo time (UTE) studies3. UTE studies have also shown that the bright line is associated to the calcified layer and deep region of cartilage. The present study supports these observations. The loss of high-intensity signal with advanced degeneration at the osteochondral junction may be due to increased mineralization of the tissues with development of osteoarthritis.

CONCLUSION
SWIFT can elucidate tissue changes in the zone of calcified cartilage and subchondral bone, which are associated to the degree of OA.

REFERENCES