Development of CEST liposomes for monitoring nanoparticle-based cancer therapies

Kannie WY Chan1,2, Tao Yu3,4, Yuan Qiao2, Guanshu Liu1,5, Ming Yang3, Jeff WM Bolte1,2, Peter CM van Zijl1,6, Justin S Hanes5, and Michael T McMahon1,6

1Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, 2Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, MD, United States, 3Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, 4Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, 5The Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center, Baltimore, MD, United States, 6F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

Targeted audience: Investigators who are interested in using MRI to monitor nanoparticle-based therapy.

Introduction: Nanoparticle-based drug delivery has great potential for improving the efficacy of chemotherapy in the treatment of cancer (1). Controlled release of therapeutics from nanoparticles may provide a new alternative for cancer treatments e.g. using vascular-active agents (2). However, the clinical translation of nanoparticle-based chemotherapy has experienced challenges; one of them is the lack of tools to evaluate the biodistribution and pharmacokinetics of the nanoparticle-based chemotherapeutics in cancer patients during the course of treatment. Here, we aim to develop theranostic nanoparticles (i.e. providing therapy and diagnostics) with good temporal and spatial resolution based on diamagnetic Chemical Exchange Saturation Transfer (diaCEST) - a molecular MRI contrast mechanism allowing the use of non-metallic and biocompatible contrast agents. Towards this goal, we have developed a stable formulation of theranostic PEG-coated liposomes that have a frequency offset further from water (at 5 ppm) than our previous design (3), and assessed their distribution and retention in a murine colon cancer model. The integration of CEST agents with nanoparticles provides a non-invasive, quantitative and potentially translatable way to probe nano-chemotherapeutics in tumors.

Method diaCEST liposome (DL) preparation: Drug-containing liposomes were prepared with the poly(ethylene) glycol (PEG) concentration varied systematically using the thin film hydration method. In brief, 25 mg of lipid dissolved in chloroform was dried, with the resultant thin film hydrated using 1 ml barbituric acid (BA) to form multilamellar vesicles. The mixture was then annealed at 55-65 °C, sonicated, and subsequently extruded through stacked polycarbonate filters (3). Doxorubicin (DOX) was then loaded into the liposomes remotely. Animal Preparation: Five million CT26 cells were injected subcutaneously into the right flank of a mouse and allowed to grow for ~10 days prior to MRI. CEST imaging: Mice were anesthetized using isoflurane and positioned in a 11.7T horizontal bore Bruker Biospec scanner, and were imaged before and 24 h after intravenous administration of 100 ul of BA/DOX PEGylated liposomes. CEST images were acquired through collection of two sets of saturation images, a water saturation shift referencing (WASSR) set for B0 mapping and a CEST data set for characterizing contrast. For the WASSR images, the saturation parameters were t Ses=500 ms, B1=0.5 uT, TR=1.5 sec with saturation offset incremented from -1 to +1 ppm with respect to water in 0.1ppm steps, while for the CEST images: t Ses=3 sec, B1=4.7 uT, TR=5 sec, with offset incremented from -6 to +6 ppm (0.3 ppm steps) with a fat suppression pulse. The acquisition parameters were: TR=5.0 sec, effective TE=21.6 ms, RARE factor=8. The CEST images were acquired before and 24 h after the liposome administration. Data Analysis: MR images were processed using custom-written Matlab scripts with the CEST contrast quantified by calculating the asymmetry in the magnetization transfer ratio (MTR asym) setting MTR asym=(S-Δω - S+Δω)/S0, Δω = 5ppm.

Results and discussion We developed theranostic DLs loaded with both CEST imaging agent (BA) and chemotherapeutic agent (DOX) (Fig 1a). The in vitro CEST contrast for these liposomes with 0%, 5%, 10% and 20% PEG was 24%, 13%, 15% and 13% respectively at 5 ppm (Fig 1b). Among these liposomes, we also studied the formulations with 10% PEG and 30%, 50% and 70% cholesterol (Fig. 1c). In order to determine if these formulations would be stable in the course of imaging (typically <24 h), we compared the CEST contrast among different formulation at 24 h after dialysis (Fig. 2a). We developed a stable formulation of theranostic PEG-coated liposomes that have a frequency offset further from water (at 5 ppm) than our previous design (3), and assessed their distribution and retention in a murine colon cancer model. The integration of CEST agents with liposomes provides a non-invasive, quantitative and potentially translatable way to probe nano-chemotherapeutics in tumors.