Detection of brown fat mass and activity by hyperpolarized xenon MR

Rosa Tamara Branca1,2, Christian White1, and Le Zhang3

1Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States, 2UNC at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill, North Carolina, United States, 3Material Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States

Introduction: Brown adipose tissue is a tissue specialized for non-shivering thermogenesis. It has recently become the focus of much research attention due to its implication in the development of human obesity[1,2]. Despite its importance, the detection of this tissue by conventional imaging methods presents several challenges. 18FDG-PET fails to reliably detect the metabolism of this tissue since the main substrates for BAT thermogenesis are fatty acids, not glucose[2]. MRI, on the other hand, detects tissue fat fraction [3], which is known to depend on subject adiposity and have a large inter- and intra-subject variability. Here we investigate the use of HP xenon MR for the detection of BAT activity and compare this methodology to 18FDG-PET and proton MRI in both lean and obese animals.

Methods: Both rats (8-female Fisher rats at 6 weeks of age), and mice (10 C57 female and 15 ob/ob female) were used for these studies. All MR studies were conducted on a 9.4 T small animal Bruker system using a surface xenon coil, accurately located above the inter-scapular brown fat tissue, and positioned inside an external volume proton coil, used to collect spin echo images and localized spectra for reference and water/fat quantification in BAT. For all xenon scans the animals were anesthetized with Nembutal, intubated and mechanically ventilated with a mixture of oxygen and natural abundance (26% 129Xe) xenon, hyperpolarized up to 9.5% by SEOP using a commercial polarizer (Polarean. Inc, Research Triangle Park, NC). Dynamic imaging (Gradient Echo, FOV=5.5cm, TR=4s, NA=2, TE=2.5ms, MTX=64X32) and spectroscopy data (90 degree flip angle adiabatic excitation pulse, TR=4s, NA=15) were acquired before and during stimulation of BAT, the latter achieved by an injection of norepinephrine (2mg/kg). 18FDG-PET/CT scans were conducted on the same animal or on a littermate, using a GE eXplore Vista small animal system. 18FDG was injected right after the injection of NE or saline, to perform time-uptake analysis and indirectly evaluate tissue blood flow. At the end of the studies histology was used to determine tissue fat content (H&E staining) and thermogenic capacity (UCP1-staining).

Results: Our studies show that HP xenon can be used to detect BAT activity, during which a more than 100 fold enhancement can be observed in the xenon signal dissolved in BAT. Comparison between dynamic spectroscopy data and histology reveals also the possibility to detect average tissue hydration (i.e. water-fat content) as well as the possibility to detect brown fat thermogenic activity and fatty acid consumption in real time (data not shown). Compared to 18FDG-PET and proton MRI this technique was able to detect active BAT (UCP1-positive) in obese animals that appear to have a reduced 18FDG uptake, compared to that of nearby muscle, and a fat fraction similar to the nearby WAT (~80%).

Conclusions: Our work show that HP xenon is the ideal probe to detect BAT activity. The enhancement of the xenon signal dissolved in BAT during stimulation and the large chemical shift difference between gas phase and dissolved phase signal are such that a background free map of the tissue can be made in only few minutes. Compare to 18FDG-PET and proton MR, HP xenon MR seems to be uniquely suited to detect BAT activity in overweight and obese individuals where the high lipid content of this tissue precludes its detection by proton MR methods and where the in situ presence of large fatty acid storage may preclude the need for an elevated glucose consumption.