A 7-Tesla Longitudinal Study on Proportion of Veins in Plaques of Patients with Multiple Sclerosis

Assunta Dal-Bianco1, Guenther Grabner2, Hans Lassmann1, Melanie Schermthaner3, Claudia Kronnerwetter3, Michael Weber2, Clemens Vass4, Karl Kircher5, Andreas Reitner5, Eduard Auff2, and Siegfried Traattnig6

1Department of Neurology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria. 2High field MR Center of Excellence, Department of Radiology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria. 3Center for Brain Research, Medical University of Vienna/Vienna General Hospital, Vienna, Austria. 4Department of Radiology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria. 5Department of Ophthalmology and Optometrics, Medical University of Vienna/Vienna General Hospital, Vienna, Austria

Target audience: Radiologists who specialize in neuro-MR imaging and imaging of multiple sclerosis (MS) at 3 Tesla and 7 Tesla.

Purpose: Intralesional veins are known to be a histopathological hallmark of MS1,2. Susceptibility-weighted-imaging (SWI), combined with fluid-attenuated inversion recovery (FLAIR) sequences at 3 Tesla, and FLAIR–like contrast on 7 Tesla MRI systems,3 allows detailed imaging of veins4 as small in diameter as approximately 0.2 mm. The purpose of this pilot study was to monitor the dynamics of intralesional veins over a period of two years in plaques and corresponding normal-appearing white matter (NAWM) in patients with relapsing-remitting (RRMS) and secondary progressive MS (SPMS), compared to an age-matched control group.

Methods: Ten patients with MS and ten age-matched healthy controls were enrolled in a two-year prospective, longitudinal study. All patients underwent an annual neurological examination, as well as a brain MRI, over the two-year period. At all three time-points, high-resolution depiction of veins was obtained with 7T-SWI. Veins were manually segmented into plaques of different maturation stages, in their corresponding NAWM of the same layer, as well as in the white matter of the appropriate age-matched control areas. The dynamics of vein-volume to tissue-volume ratio during the two years was assessed with regard to subtypes of MS and maturation of plaques.

Results: The inflammatory tissue of RRMS and SPMS plaques shows a significantly higher proportion of deoxygenated veins compared to corresponding non-inflammatory control tissue and corresponding NAWM tissue. The proportion of visible veins within plaques did not change significantly over two years—neither within the subgroups nor between subgroups. We found a trend toward an increasing proportion of visible veins in the pre-plaque areas and a significant increase in venous proportion in newly developed plaques compared to the control group. The proportion of veins in the NAWM was in accordance with control values.

Discussion: Since SWI is also a measure of oxygen desaturation, the significantly higher proportion of deoxygenated veins in plaques may indirectly reflect the higher oxygen demand in inflammatory tissue compared to healthy controls.

Conclusion: The ultrahigh spatial resolution provided by the high SNR and the higher phase shift at 7T enables the analysis of vein density in MS plaques compared to NAWM, which may provide an insight into the pathophysiology of MS in vivo.