Purpose: Simultaneous multi-slice parallel imaging techniques, such as CAIPIRINHA 1 and Blipped-CAIPI 2, usually need external calibration scans for image reconstruction. Internal auto-calibration for such slice-accelerated acquisitions can be performed if the reconstruction is conducted in the 3D k-space instead of the 2D k-space 3. In this work, we develop an auto-calibrating data acquisition scheme in the 3D k-space for simultaneous multi-slice Echo Planar Imaging (EPI).

Methods: For N simultaneously excited slices, Blipped-CAIPI 2 uses positive and negative G_z blips to alternate the phase between successive slices among N_s different states: $(2\pi/N_s) \times ((N_s-1)/2, -(N_s-1)/2, +1, ... +1)$. Since these phase states correspond to the N_s-point DFT of the excited slices, the 2D k-space data acquired in Blipped-CAIPI can be reformulated into a 3D k-space data set 4, as illustrated in Fig. 1a. In our proposed ACME (Auto Calibrating Multiband EPI) technique, G_z blips are also utilized to step through k_z, but the need for external calibration scans is eliminated by the fully sampled auto-calibration signal (ACS) in the central k-space area, as illustrated in Fig. 1b. If there is little variation of the receiving coil sensitivity along the slice select direction, the undersampling pattern in Fig. 1a and Fig. 1b lead to similar conditions for the reconstruction problem. With only intra-slice aliasing, the undersampling pattern in Fig. 1b has an advantage over that in Fig. 1a by restricting the EPI related ghostsing artifacts only to slices which contain the source of the ghosting. The indices on the sampled points in Fig. 1b indicate the acquisition order of the samples if a one-shot acquisition were used. This acquisition order is picked to smooth the signal decay in the 3D k-space. Fig. 1c displays the gradient waveforms for the undersampling pattern in Fig. 1b. In practice, a multi-shot interleaved acquisition with echo time shifting is used instead of one-shot acquisition to shorten the echo train length.

Three fold slice-accelerated brain images of a healthy volunteer were acquired on a 1.5T GE scanner using an 8-channel head coil with a multi-shot flyback EPI scheme. Scan parameters were TR/TE/matrix/slice thickness/multislice slice spacing/echo train length = 500ms/20/162×162×3mm/500ms/3mm/45mm/8. The total number of points acquired on the k_x-k_y plane and the number of interleaves in the acquisition (N_{int}) were 162/21 for ACME and 96/12 for Blipped-CAIPI. Both ACME and Blipped-CAIPI images were reconstructed by 2D-GRAPPA 2, using the same kernel size (k_xk_y, k_z = 7×7×3) and calibration area size (k_xk_y, k_z = 96×3×3). The internal ACS lines for ACME were included in the reconstructed images. The Blipped-CAIPI data was reconstructed twice using two different externally fully sampled calibration data sets. One of the fully sampled data sets well matched the slice-accelerated data, while the other fully sampled data set was acquired after the subject rotated his head for about 26 degrees and therefore does not match the slice-accelerated data.

Results: Whole brain imaging can be performed using the proposed ACME technique (Fig. 2a) and the Blipped-CAIPI technique (Fig. 2c) are similar, but the ACME images have higher SNR due to the inclusion of the internal ACS data. The different undersampling patterns of ACME and Blipped-CAIPI result in different artifacts in the reconstructed images. In ACME, the ghosting of the eyeball caused by motion during the EPI readout is mostly restricted to the slice containing the eyeball (Fig. 2b). In Blipped-CAIPI, however, the ghosting of the eyeball appears in a slice not containing the eyeball (Fig. 2c), which may hamper future analysis of the unaliased images. Mismatch between the external calibration scan and the accelerated scan may further degrade the image quality of Blipped-CAIPI (Fig. 2d). The ACME images and the Blipped-CAIPI images have slightly different distortions due to the different sequence timings.

Discussion and Conclusion: Both Blipped-CAIPI and ACME techniques can perform whole brain imaging using simultaneous multi-slice EPI acquisition. Unlike the Blipped-CAIPI technique, the proposed ACME technique does not need any external calibration scans and therefore has minimum artifacts caused by the mismatch between the calibration data and the accelerated data. If the ACS data is included in the reconstructed k-space, the ACME images will have higher SNR than Blipped-CAIPI images. The undersampling pattern of ACME is helpful in limiting the ghosting artifacts introduced by motion or flow to slices containing the sources of the ghosting.