The use of k-means clustering and Bayesian inference framework for the processing of vessel-encoded p-CASL images as compared with super-selective p-CASL MRI

Nolan S Harkamp1, Michael Helle2, Michael A Chappell3,4, Thomas W Okell1, Reinoud P H Bokkers1, Jeroen Hendrikse1, and Matthias J P van Osch1

1Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands, 2Philips Technologie GmbH, Innovative Technologies, Research Laboratories, Hamburg, Germany, 3Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom, 4FMRI Centre, University of Oxford, Oxford, United Kingdom, 5C.J. Gorter Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands

Introduction Vessel-encoded (VE) pseudo-continuous arterial spin labeling (p-CASL) is a territorial ASL (T-ASL) technique to identify the perfusion territories of arteries. The aim of this study was to compare the output of two VE p-CASL image processing methods, k-means clustering and a Bayesian framework, with the perfusion maps acquired with super-selective p-CASL.

Methods Fourteen healthy volunteers were investigated on a 3 T MRI scanner (Philips Healthcare). Two T-ASL techniques were performed: one planning-free vessel encoded (VE) p-CASL sequence1,2 with 5 cycles, and four super-selective p-CASL sequences3 for both internal carotid arteries (RICA, and LICA) and both vertebral arteries (RVA, and LVA). The VE p-CASL images were processed with both k-means clustering4, resulting in 3 territories (RICA, LICA, and basilar artery [BA]), and a Bayesian framework5, resulting in 4 territories (RICA, LICA, RVA, and LVA).

The territorial maps calculated with both VE techniques were compared to those acquired with super-selective p-CASL. The regions of the RICA, LICA, and BA were manually outlined by one observer (NH) and quantitatively compared using the Hausdorff distance, Dice similarity coefficient (DSC). The territorial maps calculated with the Bayesian framework were also compared using the modified DSC (mDSC) for a fractional comparison of the actual perfusion of the 4 territories.

The Hausdorff distance is a measure of error and is defined as the maximum distance between two regions.6 The Dice similarity coefficient (DSC) is a spatial overlap measure and is defined as the ratio between the number of voxels in the intersection between two regions, and the mean volume of both regions.6 Perfusion maps of the RICA, LICA, RVA, and LVA calculated with the Bayesian framework were examined with a DSC (mDSC) modified according to Crum et al.7

For a qualitative comparison of both VE processing methods, anatomical regions of the cortical anterior circulation, deep gray matter, cortical posterior circulation, and (for Bayesian framework only) the vertebrobasilar system (VBS), were scored by one observer (NH) for their agreement with the super-selective p-CASL perfusion maps. The Dice similarity coefficient (DSC) was calculated for each anatomical region, and the mean and standard deviation were calculated. The Dice similarity coefficient {0-1} is defined as the ratio of the intersection between two binary masks and the union of both masks. The Dice similarity coefficient with an absolute value greater than 0.9 indicates excellent agreement, 0.7-0.9 indicates good agreement, 0.5-0.7 indicates moderate agreement, and 0.3-0.5 indicates poor agreement.

Results Two cases are presented, in which there is mixed perfusion in the deep gray matter (figure 1) and in the anterior circulation (figure 2). The quantitative comparison of the entire group is summarized in table 1 and the qualitative comparison is depicted in figure 3.

Discussion The results show that the territorial maps produced by VE p-CASL agree reasonably well with the perfusion maps acquired with super-selective p-CASL. Special consideration should be taken when using k-means clustering since it tends to fail in regions with high mixed perfusion, such as the deep gray matter. The Bayesian inference framework was superior in this regard; where it did not detect mixed perfusion it was found that the VE p-CASL source images had lower vessel selectivity between the different cycles. VE p-CASL with k-means clustering appears suitable as a general purpose T-ASL strategy, but the Bayesian framework is preferable since it can determine mixed perfusion. However, this is only reliable where the VE p-CASL images contain sufficient vessel selectivity, which was not always achieved using a planning free approach. To accurately determine the perfusion territories of a vessel, super-selective p-CASL is still recommended.

References