Advanced MR Techniques with MSK Application

UTE : Cartilage and Fibrocartilage - Structure & Function

Emily J. McWalter, Ph.D.
Postdoctoral Fellow, Department of Radiology, Stanford University

Wednesday, May 9th 2012, 7:30 am

Background

Healthy joints, such as the knee, hip and ankle, are essential for carrying out everyday activities such as walking, climbing stairs and rising from a chair. However, such activities are difficult if not impossible for the 27 million Americans who suffer from osteoarthritis (1), a degenerative joint disease for which there is no known cure. MRI is being increasingly used to study and evaluate joint tissues in clinical studies of osteoarthritis (2-4); however, there are certain important joint tissues that are difficult to visualize using traditional MRI scans. These tissues, such as tendons, ligaments, meniscus and the deep layers of cartilage, have highly organized collagen ultra-structures and therefore short T2 relaxation times. Most clinical scanners use echo times of 8-20 ms; however, these tissues have T2 relaxation times ranging from less than 1 ms (5), in tendons, to 12 ms in the meniscus (4). Thus, short T2 tissues have limited or no signal on traditional MR images. With ultrashort echo time (UTE) sequences, echo times as short 8 μs are possible (6). This greatly improves our ability to visualize short T2 tissues and also allows us to quantify properties such as T2, T2* and T1ρ relaxation (7-9). Measuring these quantities is particularly important because traditional MR techniques have shown that T2 and T1ρ are sensitive to degenerative changes in cartilage and meniscus (10,11). If we can identify and track early degenerative changes in short T2 tissues with these metrics it may be possible to develop and evaluate disease modifying treatments for osteoarthritis. UTE MRI therefore has great potential for improving our understanding of short T2 joint tissues and the role they play in osteoarthritis and other degenerative joint diseases.

Learning Objectives:

By the end of this session participants will be able to:

1. Describe the structure and function of tendons, ligaments, meniscus and cartilage in healthy and degenerated joints.
2. Describe the basics of UTE imaging.
3. Describe how UTE has been used morphologic and quantitative imaging of short T2 tissues in healthy and degenerated joints.
References

2. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a
 new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion
 assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Annals of the rheumatic
diseases 2008;67(2):206-211.
 Score (WORMS) of the knee in osteoarthritis. Osteoarthritis and cartilage / OARS,
 imaging in healthy subjects and patients with osteoarthritis. Radiology 2008;249(2):591-
 600.
5. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an
 introduction to ultrashort TE (UTE) imaging. Journal of computer assisted tomography
6. Brittain J, Shankaranarayanan A, Ramanan V, et al. Ultrashort TE imaging with single-
digit (8 μs) TE. 12th Annual Meeting of the International Society of Magnetic Resonance
7. Carl M, Chiang JT. Investigations of the origin of phase differences seen with ultrashort
 TE imaging of short T2 meniscal tissue. Magnetic resonance in medicine : official journal
 of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in
 Medicine 2011.
8. Du J, Carl M, Diaz E, et al. Ultrashort TE T1rho (UTE T1rho) imaging of the Achilles
 tendon and meniscus. Magnetic resonance in medicine : official journal of the Society of
 Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine
 2010;64(3):834-842.
9. Williams AA, Qian Y, Chu CR. Clinical ultra-short TE-enhanced T2* mapping of
 meniscus. 19th Annual Meeting of the International Society of Magnetic Resonance in
10. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR
 imaging: comparison with severity of knee osteoarthritis. Radiology 2004;232(2):592-
 598.
cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic