Non-Contrast-Enhanced MRA

Vivian S. Lee, MD, PhD, MBA
Senior Vice President for Health Sciences
Dean, School of Medicine
CEO, University Health Care
University of Utah
USA

Financial Disclosure

• This work has been supported by NIH R01: CA092439
• Together with Jian Xu, Siemens, we have filed a provisional patent for variable flip angle 3D ECG-triggered non-contrast-enhanced MRA P080412-01/US, Reg 12/622/061

Nephrogenic Systemic Fibrosis

• With NSF, a renewed interest in non-contrast-enhanced MRA
 – Highest risk in high doses of Gd (> 30 ml) in patients with renal insufficiency
• Renal insufficiency common in patients with atherosclerotic disease
 – Veterans PVD study (n=5787):
 • 30% moderate renal insufficiency (GFR 30 – 59 ml/min/1.73m²)
 • 8% severe renal failure (GFR < 30)

Non-Contrast-Enhanced MRA

• Time-of-flight and QISS
• Phase Contrast
• ECG-Gated Fast Spin Echo
• Balanced SSFP (True FISP, FIESTA, Balanced FFE)
• Arterial Spin Labeling with Balanced SSFP or FSE
• Recommendations for Options across MRA applications

QISS MRA

Robert Edelman, M.D., Evanston
Edelman RR et al MRM 2010; 63:951

Non-Contrast-Enhanced MRA

- Time-of-flight and QISS
- Phase Contrast

- ECG-Gated Fast Spin Echo
- Balanced SSFP (True FISP, FIESTA, Balanced FFE)
- Arterial Spin Labeling with Balanced SSFP or FSE
- Recommendations for Options across MRA applications
Flow sensitivity

- Depends primarily on FA of refocusing pulses
- Greater for low FA
- Due to increased mixing between stimulated and spin echoes

Depends primarily on FA of refocusing pulses
Greater for low FA
Due to increased mixing between stimulated and spin echoes

Human subjects results

- VFL flow sensitivity cut-off 5 – 10 cm/sec
- Below 5 – 10 cm/sec flow (systolic or diastolic), VFL results in flow void

Example 2: slow flow

- Distal vessels better depicted on NC-MRA
- Slow flow causes mistiming on CE-MRA

Example 3: hyperemia

- Fast flow means early contrast arrival
- Tibioperoneal trunk

Patient study: example

- Comparable depiction of arteries even beyond stenosis
- Claudication and diabetic vascular disease

 Phantom results

- Atanasova I, et al ISMRM 2009

(c) 2012, Vivian S. Lee

Example 4: reduced pulsatility

Other territories with slow flow for VFA FSE:

Hand MRA

Temperature challenge: Non-Gd MRA

Healthy female volunteer
Anatomic variation:
- Persistent median artery (white arrow)
- No deep arch
- Incomplete superficial arch (yellow arrow)

Temperature challenge: Non-Gd MRA
History of L thumb cold sensitivity

A & B. Left hand. Increased vessel visualization and caliber following warming (superficial arch visualized, arrow); red beading of princeps pollicis (arrowheads) suggesting underlying vascular abnormality. Images acquired with VFA-FSE at 3T
C. Cyanosis of left nailbed on cold exposure

45 F with limited scleroderma

- Little change in vessel visualization and caliber between cooling and warming

Non-Contrast-Enhanced MRA

- Time-of-flight and QISS
- Phase Contrast
- ECG-Gated Fast Spin Echo
- Balanced SSFP (True FISP, FIESTA, Balanced FFE)
- Arterial Spin Labeling with Balanced SSFP or FSE
- Recommendations for Options across MRA applications

(c) 2012, Vivian S. Lee

Flow sensitive dephasing-bSSFP

- bSSFP sequence
- Two acquisitions:

 - Use flow sensitive dephasing (like T2 prep) during systole to reduce signal during systole (make arteries dark)

Flow sensitive dephasing-bSSFP

- \[\phi = \gamma \cdot \mathbf{G} \cdot \mathbf{v} \cdot \mathbf{t} \] where \(\mathbf{G} \) is the first-order gradient moment

MRA = Bright Blood - Black Blood Imaging

FSD-prepared SSFP

- ECG
- Delay
- Triggering
- Black Blood Imaging
 - Triggered at Systole
 - Matrix: 384x300x80; Sl: 1.3mm
 - FOV: 380x450mm
 - 3D bSSFP
- Bright Blood Imaging
 - Triggered at Diastole

80M with claudication

- Gd
- FSE
- CFA
- VFA
- Flow sensitivity

Non-Contrast-Enhanced MRA

- Time-of-flight and QISS
- Phase Contrast

- ECG-Gated Fast Spin Echo
- Balanced SSFP (True FISP, FIESTA, Balanced FFE)

- Arterial Spin Labeling with Balanced SSFP or FSE
- Recommendations for Options across MRA applications

(c) 2012, Vivian S. Lee

Arterial Spin Labeling: Principles

Key ideas
- "Label" or "tag" usually means a 180° pulse which inverts magnetization
- Inversion pulses (180°) can be applied in FOV or outside FOV to differentiate between inflowing blood and stationary tissues
- Then during the delay time (TI)
 - Blood moves
 - Inverted tissue recovers longitudinal magnetization with T1 relaxation
- If we image at the TI that is where magnetization crosses null point, then we will null or suppress that signal

Arterial Spin Labeling: Methods

Two labeling methods
1. Tag-on, Tag-off (Two acquisitions)
2. Spatially selective and non-selective inversion pulses (One acquisition)

Two imaging options
1. FSE (HASTE)
2. Balanced SSFP (true FISP, FIESTA)

Less sensitive to field inhomogeneities
Flow compensated in 3 directions—better for complex flow patterns

Arterial Spin Labeling: Method 2

- Spatially selective and non-selective inversion pulses (1 acc)
- Invert whole imaging volume (180°)
- Re-vert blood proximal to and outside of imaging volume (another 180°) back to full magnetization
- Wait TI for fully magnetized blood to travel into imaging volume
- At that TI, the background is nulled
- MRA = one acquisition (no subtraction)
Selective Inversion (tagged blood with full magnetization)

Non-Selective Inversion (whole abdomen)

Application:
- Abdominopelvic MRA
- Challenge: Large anatomic coverage
- Need tagged blood to traverse from renal to femoral arteries before full T1 recovery of background

Atanasova I et al. JMRI 2011

Arterial Spin Labeling: Method 2

Non-Contrast-Enhanced MRA
- Time-of-flight and QISS
- Phase Contrast
- ECG-Gated Fast Spin Echo
- Balanced SSFP (True FISP, FIESTA, Balanced FFE)
- Arterial Spin Labeling with Balanced SSFP or FSE
- Recommendations for Options across MRA applications

(c) 2012, Vivian S. Lee
Non-Gd MRA Options

<table>
<thead>
<tr>
<th>MRA Application</th>
<th>Non-Contrast-Enhanced Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial MRA</td>
<td>3D TOF</td>
<td>TONE and MOTSA improve sensitivity to slower flow</td>
</tr>
<tr>
<td>Carotid MRA</td>
<td>3D TOF ± with 3D bSSFP or FSE</td>
<td></td>
</tr>
<tr>
<td>Thoracic-Aorta MRA</td>
<td>3D TOF</td>
<td>EG, contrast-all</td>
</tr>
<tr>
<td>Mesenteric MRA</td>
<td>3D TOF</td>
<td>EG, contrast-all</td>
</tr>
<tr>
<td>Lower Extremity MRA</td>
<td>3D TOF</td>
<td>EG, contrast-all</td>
</tr>
<tr>
<td>Coronary MRA</td>
<td>3D bSSFP</td>
<td>3D SSFP or ASL, No flow-spoiling, TONE and MOTSA improve sensitivity to slower flow</td>
</tr>
<tr>
<td>Abdominal Aorta/Celiac MRA</td>
<td>3D bSSFP, ± ASL</td>
<td>3D SSFP or ASL, No flow-spoiling, TONE and MOTSA improve sensitivity to slower flow</td>
</tr>
<tr>
<td>Peripheral MRA</td>
<td>3D FSE or 3D TOF in 3DTOF or GISS</td>
<td>Multidirectional flow pattern favors bSSFP over gated FSE</td>
</tr>
<tr>
<td>Hand and Foot MRA</td>
<td>FSE or ASL ± with 3D bSSFP</td>
<td>3D SSFP or ASL, No flow-spoiling, TONE and MOTSA improve sensitivity to slower flow</td>
</tr>
</tbody>
</table>

Modified from Miyazaki M & Lee VS, Radiology, 2008

Non-Gd MRA: Future Directions

- Multicenter study: Three station non-Gd MRA (< 30 min)
 - Option 1: QISS (time-of-flight)
 - Option 2:
 - Abdominopelvic: IR-bSSFP
 - Thigh and calf station: ECG-gated FSE
- Non-Gd MRA at 3T: overcoming B1 inhomogeneities
- "Dynamic" non-Gd MRA
 - Variable flip angle imaging with compressed sensing
 - "FERAL" phase contrast-MRA (Edelman RR et al. SCMR abstract, JCMR 2011)

Acknowledgements

- NYU
 - Manjil Chatterji
 - Qin Chen
 - Dan Kim (Utah)
 - Ruth Len
 - Niels Oesingmann
 - Harry Rustak
 - David Stoffel
 - Pippa Storey
 - Jian Xu, Siemens
 - Graham Wiggins
- Northwestern University/Cedar Sinai
 - Debiao Li
 - Zhaoyang Fan
- Columbia University
 - Ilyana Almouzzi
 - Andrew Laine
 - Evanston Radiology
 - Robert Edelman
 - Siemens
 - Xiaoming Bi
- Mitsue Miyazaki, Toshiba

NIH R01 HL092439

(c) 2012, Vivian S. Lee